기둥손실에 따른 철골프레임 잔존내력의 해석적 평가

Analytical Evaluation of Residual Strength for Steel Frame in case of Column Member Loss

  • 투고 : 2011.10.28
  • 심사 : 2011.12.01
  • 발행 : 2011.12.31

초록

구조물의 우발적인 붕괴가 발생할 경우, 기둥 또는 기둥군(群)에 낙하물에 의한 충격이 가해지게 된다. 낙하물의 충격하중은 기둥부재의 하중변형관계에 따라 소성변형에너지로 흡수가 가능하다. 진행성 붕괴를 방지하기 위해서는 기둥부재의 에너지 흡수 능력이 상시지지 하는 연직하중과 낙하물의 충격하중을 합한 연직하중보다 커야 한다. 이를 위해 구조물이 최종 붕괴 상태에 도달되는 전 과정에 대한 기둥부재의 하중변형관계를 명확히 파악할 필요가 있다. 본 논문에서는 1층 4경간 평면철골프레임의 비선형유한요소해석을 실시하여 기둥부재의 우발적 손실에 대한 에너지 흡수 능력을 평가하였다. 또한, 극한해석을 실시하여 연직하중의 저하 정도를 비교 검토하였다.

When impacts by falling objects are applied to the structures, vertical resisting member(column or column group) results in progressive collapse. By knowing clearly load-deformation relationship of a structural frame, to prevent progressive collapse by absorbing potential energy of falling objects though column groups are lost by the impact of falling object accidently. If residual strength in vertical direction exceeds vertical load, which the sum of the weight of falling objects and usual supportive vertical load as the result of absorbing released location energy, it does not result in progressive collapse. On the other hand, in case when weight of falling objects is included in usual supportive vertical load. In this paper, 1-story 4-spans model is analyzed by non-linear FEM and to examine the level of deterioration, limit analysis of 1-story 4-spans plane frame was carried out.

키워드

참고문헌

  1. Nair, R.S. (2003) Progressive Collapse Basics, Proceedings of AISC-SIDNY Symposium on Resisting Blast and Progressive Collapse, AISC, New York.
  2. Li Z., Ohi K., Ito T. (2003) Sensitivity Analysis in Vertical Load Carrying Capacity of Framed Structures to Member Disappearance, Journal of Constructional Steel, 11, pp.325-332.
  3. Lee C.H., Kim S.U., Lee K.G., Han K.H. (2009) Simplified Nonlinear Dynamic Progressive Collapse Analysis of Welded Steel Moment Frames Using Collapse Spectrum, Journal of Korean Society of Steel Construction, 21(3), pp.267-275.
  4. Lee. K.K. (2010) Evaluation of Residual Capacity of Steel Compressive Member Under Blast Load, Journal of the Architectural Institute of Korea Structure & Construction, 26(10), pp.37-44.
  5. Kim J.K., Park J.H. (2007) Design of Steel Moment Frames Considering Progressive Collapse, Journal of the Architectural Institute of Korea, 23(8), pp.43-50.
  6. Kim J.K., Choi H.H. (2009) Performance Evaluation of Building Structures Against Progressive Collapse, Journal of Computational Structural Engineering Institute of Korea, 22(5), pp.37-43.
  7. Kim S.U. (2010) Behavior of Double-Span Beams and Simplified Nonlinear Dynamic Progressive Collapse Analysis of Steel Moment Frames, Journal of Computational Structural Engineering Institute of Korea, 23(1), pp.41-48.
  8. Choi H.H., Kim J.K. (2003) Energy-Based Seismic Design of Buckling-Restrained Brace Frames, Proceeding of Architectural Institute of Korea, Vol. 23, pp.67-70.
  9. Choi H.H, Kim J.K. (2005) Seismic Design of Buckling Restrained Frames Based on the Modified Equivalent Energy Concept, Journal of Architectural Institute of Korea, 198, pp.91-99.
  10. Park H.M. (2011) Evaluation on the Post-buckling Energy Absorption of H-Shaped Steel Column for Prevention Progressive Collapse, Master, Chosun University, Gwangju, Korea.
  11. Li Z., Ohi K., Kawaguchi. K, Choi J.H. (2005) Progressive Collapse Prevention of Multi-story Frames Damaged by Accidental Actions, Journal of Constructional Steel, 13, pp.601-604.
  12. Livesley. R.K. (1976) Matrix Methods of Structural Analysis (2nd ed), Pergamon Press.
  13. Shanley. F.R. (1946) The Column paradox, Journal of Aeronautical Science, 13, pp.261-264.
  14. Shanley. F.R. (1947) The Column Theory, Journal of Aeronautical Science, 14, pp.261-264. https://doi.org/10.2514/8.1346
  15. Yeong. C. (2006) Post-buckling Behavior of Tapered Columns under a Combined Load using Differential Transformation, Architectural Research, 8, pp.47-56.
  16. TAE SUNG Software & Engineering, Inc., LSDYNA Training Manual.