DOI QR코드

DOI QR Code

Effects of Organic Ca Supplements on Ca Bioavailability and Physiological Functions in Ovariectomized Osteoporotic Model Rats

난소절제 골다공증 흰쥐모델에서 유기태 칼슘보충제가 칼슘 이용성과 생리기능에 미치는 영향

  • Cho, Su-Jung (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Mi-Na (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Kim, Hee-Kyong (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Jae-Hong (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Min-Ho (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Wan-Sik (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Lee, Yeon-Sook (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 조수정 (서울대학교 식품영양학과/생활과학연구소) ;
  • 박미나 (서울대학교 식품영양학과/생활과학연구소) ;
  • 김희경 (매일유업(주)중앙연구소) ;
  • 김재홍 (매일유업(주)중앙연구소) ;
  • 김민호 (매일유업(주)중앙연구소) ;
  • 김완식 (매일유업(주)중앙연구소) ;
  • 이연숙 (서울대학교 식품영양학과/생활과학연구소)
  • Received : 2011.01.03
  • Accepted : 2011.04.21
  • Published : 2011.05.31

Abstract

We evaluated the effects of organic Ca supplements chelated with milk protein (CaMP) in ovariectomized osteoporotic rats. Eight week-old Sprague-Dawley female rats were ovariectomized and fed a low $CaCO_3$ diet (0.1%) for 4 weeks to create an osteoporotic model. At that point, L4-$CaCO_3$ rats were sacrificed and the rest of the rats were divided into 4 groups, each of which was fed an experimental diet for 4 weeks: low-$CaCO_3$ (0.1%; L8-$CaCO_3$) and CaMP at 3 Ca levels: low (0.1%; L8-CaMP), normal (0.5%; N8-CaMP), and high (1.5%; H8-CaMP). Daily weight gain, serum ALP, weight and breaking force of femurs, Ca content of the lumbar, and Ca absorption were measured. Daily weight gain increased in the N8-CaMP and H8-CaMP groups compared to the low Ca groups. The ALP activity in the CaMP-fed rats was significantly lower than in the $CaCO_3$-fed rats. Both breaking force and femur weight were higher in the N8-CaMP and H8-CaMP groups compared to the L8-$CaCO_3$ group. Ca content of the lumbar increased dose-dependently with Ca intake levels of CaMP. Ca absorption rates of the CaMP-fed rats increased more than that of the rats fed low Ca levels of $CaCO_3$. These results demonstrate that the CaMP supplement had positive effects on bone metabolism and Ca bioavailability in ovariectomized osteoporotic rats. Therefore, CaMP may be recommended as a useful Ca supplement to prevent bone loss in osteoporosis.

본 연구는 유청 단백질과 칼슘이 킬레이트된 새로운 유기태 칼슘 보충제를 난소절제와 저칼슘 식이로 유도된 골다공증 모델 흰쥐에게 급여하여 유기태 칼슘 보충제의 칼슘 이용성과 생리기능에 미치는 영향을 평가하기 위해 수행되었다. 실험은 8주령 된 암컷 흰쥐(Sprague-Dawley)를 난소절제술을 실시한 후, 저수준(0.1%)의 탄산칼슘을 4주간 급여하여 골다공증 모델을 설정하고, 탄산칼슘의 함량이 저수준(0.1%), 유기태 칼슘의 함량이 저수준(0.1%), 정상수준(0.5 %), 고수준(1.5%)으로 한 실험식이를 4주간 급여하였다. 식이섭취량 및 체중, 혈청의 칼슘 및 ALP 활성, 대퇴골과 요추골의 무게, 길이, 회분양, 칼슘과 인의 함량, 대퇴골의 파단력 및 칼슘의 체내 이용성 등을 측정하였다. 그 결과 유기태 칼슘군의 식이섭취량은 8주 저탄산 칼슘군에 비해 유의적으로 증가하였고, 체중 증가는 유기태 정상 및 고칼슘군에서 유의적으로 높았다. 혈청 칼슘 농도는 유기태 칼슘의 섭취량이 증가할수록 감소하였다. 혈청 ALP의 활성은 유기태 칼슘군에서 유의적으로 낮아졌다. 유기태 칼슘 섭취수준이 증가 할수록 대퇴골의 무게가 증가하는 경향을 보였다. 대퇴골의 파단력은 유기태 정상칼슘군 및 고칼슘군에서 유의적으로 높았다. 대퇴골의 회분양은 유기태 정상칼슘군에서 유의적으로 증가하였고, 칼슘 함량은 칼슘 섭취가 증가할수록 높은 경향을 나타냈다. 요추골의 무게는 유기태 칼슘의 섭취 수준에 따라 증가하였다. 대퇴골의 길이는 4주군에 비해 8주 저탄산 칼슘군이 유의적으로 증가한 반면, 요추골의 경우는 유의적으로 감소하였다. 요추골의 회분양은 유기태 정상칼슘군에서 가장 높았으며, 칼슘 함량은 유기태 고칼슘군에서 유의적으로 증가하였다. 칼슘의 섭취량 및 분 중의 칼슘 배설량은 칼슘섭취 수준이 증가함에 따라 증가하였다. 칼슘의 흡수량은 유기태 저칼슘군에 비해 유기태 정상 및 고칼슘군이 각각 5배, 10배 증가하였고, 칼슘의 흡수율은 유기태 저칼슘 및 정상칼슘군에서 유의적으로 증가하였다. 결론적으로 유기태 칼슘 섭취 수준에 따라 정상 혈청 칼슘 농도는 유지되었으나, 혈청 ALP의 활성은 유의적으로 낮아지는 결과를 보였다. 또한 유기태 칼슘의 섭취가 증가할수록 대퇴골, 요추골의 무게 및 칼슘 함량이 증가하였고, 대퇴골의 파단력이 유의적으로 증가하였다. 칼슘 흡수율은 유기태 저칼슘군과 정상칼슘군이 유의적으로 높게 평가되었다. 따라서 유청 단백질과 킬레이트된 유기태 칼슘소재가 골격 대사면에서 골다공증의 예방 및 치료를 위해 새로운 칼슘 보충제의 급원으로 추천할 만하다고 본다.

Keywords

References

  1. Allen LH. 1982. Calcium bioavailability and absorption: a review. Am J Clin Nutr 35: 783-808.
  2. Korean Health Industry Development Institute/Ministry of Health an Welfare. 2009. 2008 national health and nutrition survey report.
  3. Heaney RP. 1989. Nutritional factors in bone health in elderly subjects: methodological and contextual problems. Am J Clin Nutr 50: 1182-1189.
  4. Louie DS. 1996. Intestinal bioavailability and absorption of calcium. In Calcium and Phosphorus in Health and Disease. CRC Press, Boca Raton, FL, USA. p 45.
  5. Ebra D, Ciappellano S, Testolin G. 2002. Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutr 18: 743-746. https://doi.org/10.1016/S0899-9007(02)00829-8
  6. Kitt DD, Yuan YV. 1992. Casein phosphopeptides and calcium bioavailability. Trends in Food Sci Technol 3: 31-35. https://doi.org/10.1016/0924-2244(92)90113-B
  7. Ashmead HD. 1991. Comparative intestinal absorption and subsequent metabolism of metal amino acid chelates and inorganic metal salts. ACS Symposium Series 45. p 306-319.
  8. Choi SY. 2002. Final report of production of soybean phosphopeptide calcium. Ministry of Food, Agriculture, Forestry and Fisheries. p 1-178.
  9. Ken K, Yasuhiro T, Hiroaki M, Junichi Y, Yashuhiro M, Hirosi K, Akira I, Masayoshi K, Seiichiro A, Yukihiro T. 2000. Milk basic protein enhances the bone strength in ovariectomized rats. J Food Biochem 24: 467-476. https://doi.org/10.1111/j.1745-4514.2000.tb00716.x
  10. O JH, Song MH, Lee YS. 1997. Effects of high protein and calcium intakes on calcium metabolism and renal function in ovariectomized osteoporosis rat model. Korean J Nutr 30: 605-613.
  11. Zemel MB. 2002. Regulation of adiposity and obesity risk by dietary calcium: mechanisms and implications. J Am Coll Nutr 21: 146-151. https://doi.org/10.1080/07315724.2002.10719212
  12. Rajpathak SN, Eric BR, Bernard R, Willett WC, Frank BH. 2006. Calcium intake, body composition, and lipoproteinlipid concentrations in adults. Am J Clin Nutr 83: 559-566.
  13. Thomas ML, Simmons DJ, Kidder L, Ibarra MJ. 1991. Calcium metabolism and bone mineralization in female rats fed diets marginally sufficient in calcium: effects of increased dietary calcium intake. Bone Miner 12: 1-14. https://doi.org/10.1016/0169-6009(91)90117-I
  14. Kalu DN, Hardin RR, Cockerhan R. 1984. Evaluation of the pathogenesis of skeletal changes in ovariectomized rats. Endocrinology 115: 507-512. https://doi.org/10.1210/endo-115-2-507
  15. Mitruka BM, Rawnsley HM. 1981. Clinical biochemical and hematological reference values in normal experimental animals and normal humans. 2nd ed. Masson Publishing USA, Inc., New York, NY, USA. p 160-166.
  16. Lobaugh B. 1996. Blood calcium and phosphorus regulation. In Calcium and Phosphorus in Health and Disease. CRC Press, Boca Raton, FL, USA. p 32-37.
  17. Armandi BH, Bimbaum RS, Juma S, Barengolts E, Kukreja SC. 2000. The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanism. Calcif Tissue Int 66: 61-65. https://doi.org/10.1007/s002230050012
  18. Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D, Ciesielaska-Kopacz N. 2002. Dynamic pattern of IGF-I and chosen biochemical markers of bone metabolism in a rat model of postmenopausal osteoporosis. Endocr Regul 36: 9-10.
  19. Raisz LG. 2005. Pathogenesis of osteoporosis: concept, conflict, and prospects. J Clin Invest 115: 3318-3325. https://doi.org/10.1172/JCI27071
  20. Patwardhan UN, Pahuja DN, Samuel AM. 2001. Calcium bioavailability: an in vivo assessment. Nutr Res 21: 667-675. https://doi.org/10.1016/S0271-5317(01)00278-0
  21. Achliya GS, Wadodkar SG, Dorle AK. 2004. Evaluation of hepatoprotective effect of Amalkadi Ghrita against carbon tetrachloride-induced hepatic damage in rats. J Ethnopharmacol 90: 229-232. https://doi.org/10.1016/j.jep.2003.09.037
  22. Kang BH, Son HY, Ha CS, Lee HS. 1995. References values of hematology and serum chemistry in Ktc: Sprague-Dawley rats. Korean J Lab Sci 11: 141-145.
  23. Chen H, Hayakawa D, Emura S, Ozawa Y, Okumura T, Shoumura S. 2002. Effect of low or high dietary calcium on the morphology of the rat femur. Histol Histopathol 17: 1129-1135.
  24. Bell GH, Orr J. 1941. Strength and size of bone in relation to calcium intake. J Physiol 100: 299-317. https://doi.org/10.1113/jphysiol.1941.sp003944
  25. Park MN, Kim EA, Lee YS. 2004. Effects of Ca supplementation on mineral metabolism during pregnancy and lactation of calcium deficient young adult rats. J Korean Soc Food Sci Nutr 33: 958-964. https://doi.org/10.3746/jkfn.2004.33.6.958
  26. Takada Y, Maysuyama H, Kato K, Kobayashi N, Yamamura J, Yahiro M, Aoe S. 1997. Milk whey protein enhances the bone breaking force in ovariectomized rats. Nutr Res 17: 1709-1720. https://doi.org/10.1016/S0271-5317(97)00177-2
  27. Kim EM, Jang YK, Lee YS. 1999. Effect of ovariectomy and dietary calcium levels on bone metabolism in rats fed high calcium diet during growing period. Korean J Nutr 32: 150-157.
  28. Okano T, Kimura T, Tsugawa N, Fujiwara M, Yamamoto M, Kobayashi T. 1994. Bioavailability of calcium from bovine- bone-marrow calcium and calcium carbonate in vitamin D-deficient rats. Food Chem 51: 61-67. https://doi.org/10.1016/0308-8146(94)90048-5
  29. Donahue HJ, Mazzeo RS, Horavth SM. 1988. Endurance training and bone loss in calcium deficient and ovariectomized rats. Metabolism 37: 741-744. https://doi.org/10.1016/0026-0495(88)90008-X
  30. Jang HJ, Jung EB, Seong KS, Han CK, Jo JH. 2006. Effect of anchovy treated with ethanol, citric acid and dietary calcium supplements on calcium metabolism in rats. J Korean Soc Food Sci Nutr 35: 860-865. https://doi.org/10.3746/jkfn.2006.35.7.860
  31. Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL. 2007. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 97: 365-372. https://doi.org/10.1017/S000711450733674X

Cited by

  1. Bioavailability of Aspartic Acid Chelated Calcium in Calcium Deficient Rats vol.44, pp.6, 2011, https://doi.org/10.4163/kjn.2011.44.6.474
  2. Effect of Ledebouriella seseloides Extracts on Lipid Parameters in Ovariectomized Rats vol.26, pp.1, 2016, https://doi.org/10.5352/JLS.2016.26.1.83
  3. A Study on the Bioavailability of Organic Ca in Growing Rats vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.087