DOI QR코드

DOI QR Code

A Study on Operation Characteristics of Co-flow Fluidic Thrust Vector Control under Over-expanded Jet Condition

동축류 이차유동 분사를 이용한 초음속 과팽창 제트유동의 유체역학적 추력방향제어 작동특성 연구

  • 허준영 (한국항공대학교 항공우주및기계공학과) ;
  • 전동현 (한국항공대학교 항공우주및기계공학과) ;
  • 이열 (한국항공대학교 항공우주및기계공학부) ;
  • 성홍계 (한국항공대학교 항공우주및기계공학부)
  • Received : 2011.01.05
  • Accepted : 2011.04.11
  • Published : 2011.05.01

Abstract

The purpose of this research is to investigate the operation characteristics of fluidic thrust vector control using injection of the control flow parallel to the main jet direction; Co-flow injection. The technique bases on the Coanda effect of flow. Both numerical and experimental studies were conducted to investigate operation parameters; flow structure, the jet deflection angle, and shock effects near the nozzle exit. While the total pressure of main jet is the range of 300 to 790 kPa, the total pressure of control flow varies from 120 to 200 kPa. The jet deflection angle and thrust coefficient have linear relation with the pressure ratio(PR) of main jet to control flow in 0.15 < PR < 0.4 but show their limit above PR = 0.4.

본 연구는 주유동의 흐름과 동일한 방향으로 2차 유동을 분사하여 주유동의 방향을 제어하는, 동축류 유체역학적 추력방향제어기법에 관한 연구이다. 이는 유체역학 특징인 코안다 효과를 이용하는 기술이다. 주유동의 전압력은 설계노즐의 과팽창 조건인 300~790 kPa 이며 이차유동의 제어유동압력( 120~200 kPa )에 따른 제트편향각, 세부유동특성, 제어노즐 후방에서의 충격파에 따른 추력편향특성에 대하여 수치적, 실험적 연구를 수행하였다. 이를 바탕으로 초음속 제트유동의 방향을 변화시킬 수 있는 제어유동의 작동한계(0.15 < PR < 0.4)를 도출하였다.

Keywords

References

  1. Sung, H. G., Hwang, Y. S., "Thrust-vector characteristics of Jet Vanes Arranged in X-Formation within a shroud", AIAA Journal of Propulsion and Power, Vol. 527, May 2004, pp. 171-195.
  2. Asbury, S. C., Capone, F. J., “High-Alpha Vectoring Characteristics of the F-18/HARV”, AIAA Journal of Propulsion and Power, Vol. 10, 1994, pp. 116-121. https://doi.org/10.2514/3.23719
  3. Heo, J. Y., Yoo, K. H., Lee, Y., Sung, H. G., Cho, S. H., Jeon, Y. J., “Fluidic Thrust Vector Control of Supersonic Jet Using Co-flow Injection”, AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2009-5174.
  4. Mason, M. S., and Crowther, W. J., “Fluidic Thrust Vectoring for Low Observable Air Vehicles”, AIAA Flow Control Conference, AIAA 2004-2210.
  5. Strykowski, P. J., Krothapalli, A., and Forliti, D., “Counterflow Thrust Vectoring of Supersonic Jets”, Aerospace Sciences Meeting and Exhibit, AIAA 1996-115.
  6. Deere, K. A., “Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring”, AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2000-3598.
  7. Yagle, P. J., Miller, D. N., Ginn, K. B., and Hamstra, J. W., “Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles”, ASME Journal, Vol. 123, July 2001.
  8. Flamm, J. D., Deere, K. A., Berrier, B. L., and Johnson, S. K., “Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept”, AIAA Flow Control Conference, AIAA 2006-3701.
  9. Deere, K. A., “Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center”, AIAA Applied Aerodynamics Conference, AIAA 2003-3800.
  10. Yang, Z. and Shih, T. H., “New Time Scale Based $k-{\varepsilon}$ Model for Near-Wall Turbulence”, AIAA Journal, Vol. 31, 1993, pp. 1191-1197. https://doi.org/10.2514/3.11752
  11. Sarkar, S., Erlebacher, B., Hussaini, M., and Kreiss, H., “The Analysis and Modeling of Dilatational Terms in Compressible Turbulence”, Journal of Fluid Mechanics, Vol. 227, 1991, pp. 473-493. https://doi.org/10.1017/S0022112091000204
  12. Wilcox, D. C., Traci, R. M., “A Complete Model of Turbulence”, AIAA Paper 76-351, San Diego, CA.
  13. Venkateswaran, S., Li, D. and Merkle, C. L., "Influence of Stagnation Ragions on Preconditioned Solutions at Low Speeds", Aerospace Sciences Meeting and Exhibit, AIAA 2003-435.
  14. Sung, H. G., Yeom, H. W., Yoon, S. K., Kim, S. J., Kim, J. G., "Investigation of Rocket Exhaust Diffusers for Altitude Simulation", Journal of Propulsion and Power Vol. 26, No. 2, 2010, pp. 240-247. https://doi.org/10.2514/1.46226
  15. Wille, R. and Fernholz, H., “Report on First European Mechanics Colloquium, on Coanda Effect”, Journal of Fluid Mechanics, Vol. 23, 1965, pp. 801-819. https://doi.org/10.1017/S0022112065001702