DOI QR코드

DOI QR Code

Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel

SA508 탄소강 및 오스테나이트 스테인리스강의 표면잔류응력에 미치는 기계가공효과

  • Lee, Kyoung-Soo (Nuclear Power Generation Laboratory, KEPCO Research Institute) ;
  • Lee, Seong-Ho (Nuclear Power Generation Laboratory, KEPCO Research Institute) ;
  • Park, Chi-Yong (Nuclear Power Generation Laboratory, KEPCO Research Institute) ;
  • Yang, Jun-Seok (Nuclear Power Generation Laboratory, KEPCO Research Institute) ;
  • Lee, Jeong-Geun (Nuclear Power Generation Laboratory, KEPCO Research Institute) ;
  • Park, Jai-Hak (Safety Engineering Dept. of Chungbuk Nat'l Univ.)
  • 이경수 (한전 전력연구원 원자력발전연구소) ;
  • 이성호 (한전 전력연구원 원자력발전연구소) ;
  • 박치용 (한전 전력연구원 원자력발전연구소) ;
  • 양준석 (한전 전력연구원 원자력발전연구소) ;
  • 이정근 (한전 전력연구원 원자력발전연구소) ;
  • 박재학 (충북대학교 공과대학)
  • Received : 2010.12.10
  • Accepted : 2011.02.21
  • Published : 2011.05.01

Abstract

Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method.

원자력발전소의 이종용접부에서 일차응력부식균열이 발생하고 있으며 용접부의 잔류응력이 균열발생 및 성장에 기여할 수 있다. 용접부의 잔류응력은 기본적으로 용접에 의해 형성되지만 기계가공에 의해 표면잔류 응력상태가 변화할 수 있다. 본 논문에서는 기계가공이 원전재료인 SA508과 오스테나이트 스테인리스강에 표면잔류응력에 미치는 영향을 평가하였다. 이를 위해 SA508, TP304, F316L 재료를 연마, 연삭, 방전가공으로 가공한 후 표면에 형성되는 잔류응력을 측정하였다. 측정방법은 구멍뚫기법과 엑스선회절법을 사용하였다. 기계가공방법에 따라 각 재료에 미치는 잔류응력의 크기 및 방향, 잔류응력이 형성되는 깊이 등의 특성을 확인하였다.

Keywords

References

  1. Lee, K.S., Kim, T.R., Park, J.H., Kim, M.W. and Cho, S.Y., 2009, “3-D Characteristics of the Residual Stress in the Plate Butt Weld Between SA508 and F316L SS,” Trans. of the KSME A Vol. 33, No. 4, pp. 401-409. https://doi.org/10.3795/KSME-A.2009.33.4.401
  2. Lee, K.S., Park, C.Y., Kim, H.D., Kim, J.S. and Park, J.H., 2007, “Preliminary Evaluation of Primary Water Stress Corrosion Cracking Initiation Potential on Small Penetration Nozzle Welds by Residual Stress Analysis,” Journal of KPVP No. 3, pp. 101-108.
  3. Kim, Y.J., Song, T.K., Bae, H.Y., Song, T.K., Bae, H.Y., Lee, K.S., Park, C.Y., Yang, J.S., Huh, N.S., Kim, J.U., Park, J.S., Song, M.S., Lee, S.K., Kim, J.S., Yu, S.C. and Chang, Y.S., 2009, “Assessment of Round Robin Analyses Results on Welding Residual Stress Prediction in a Nuclear Power Plant Nozzle,” Transactions of the KSME A Vol. 33, No. 1, pp. 72-81. https://doi.org/10.3795/KSME-A.2009.33.1.72
  4. Song, T.K., Bae, H.Y., Chun, Y.B., Oh, C.Y., Kim, Y.J., Lee, K.S. and Park, C.Y., 2008, “Estimation of Residual Stress Distribution for Pressurizer Nozzle of Kori Nuclear Power Plant Considering Safe End,” Transactions of the KSME A Vol. 32, No. 8, pp. 668-677. https://doi.org/10.3795/KSME-A.2008.32.8.668
  5. Ahluwalia, K. and King, C., 2007, “Review of Stress Corrosion Cracking of Alloy 182 and 82 in PWR Primary Water Service (MRP-220),” EPRI.
  6. Song, T.K., Bae, H.Y., Kim, Y.J., Lee, K.S. and Park, C.Y., 2009, “Sensitivity Analysis of Finite Element Method for Estimating Residual Stress of Dissimilar Metal Multi-Pass Weldment in Nuclear Power Plant,” Transactions of the KSME A Vol. 32, No. 9, pp. 770-781.
  7. Lu, J., 1996, “Handbook of Measurement of Residual Stress,” The Fairmount Press Inc.