DOI QR코드

DOI QR Code

가스터빈 단결정 블레이드 및 베인의 손상거동 분석

Analysis of Degradation Mechanism for Single Crystal Blade and Vane in Gas Turbine

  • 투고 : 2010.12.10
  • 심사 : 2011.02.11
  • 발행 : 2011.05.01

초록

최근 고온부품의 기술발전으로 고효율 가스터빈 발전설비들이 운전되고 있으나 국내의 가스터빈설비는 일일 기동정지를 반복 운전하므로써 열싸이클에 의한 블레이드와 베인의 재료물성은 급격히 나빠지고 있다. 현재 가스터빈 부품 교체와 정비는 제작사에 의존하고 있는 실정으로 이에 본 연구에서 독자적인 교체 및 정비 관리 기준을 위해 수명평가와 손상분석의 기초자료로 활용하고자 실제 운전된 가스터빈 고압 1단 블레이드와 베인의 사용시간별 손상거동을 분석하였다. 사용재의 블레이드는 등가운전시간(EOH)이 23,686, 27,909 및 52,859 이고 베인은 28,714 및 52,859 으로 운전시간이 증가함에 따라 ${\gamma}$'의 크기는 증가하고 형상은 구형 또는 판상으로 변형되었다. 블레이드는 leading edge영역, 베인은 center영역에서 가장 큰 미세조직의 열화가 관찰되었으며 이는 경도의 감소경향과 일치하였다. 열차폐 코팅층내 bond코팅층에서는 운전시간이 증가함에 따라 표면산화층의 두께가 증가하였다.

Recently, technical advances have been made in high efficiency gas turbine power plants. In domestic gas turbine facilities, the material properties of the blade and vane are degraded by the daily start-stop operations arising from the thermo mechanical cycle. We surveyed the time dependent degradation of the HP blade and vane to gather basic data for life assessment and damage analysis. The EOH(equivalent operating hours) of the blades were 23,686, 27,909, and 52,859 and the EOH of the vanes were 28,714 and 52,859, respectively. With increased operating hours, the shape of the primary ${\gamma}$' precipitate transformed from cubic to spherical, and its average size also increased. The leading edge area of the blades and the center of the vanes had the worst morphology, and this tendency agrees with the microhardness results. The thickness of the thermally grown oxide at the outer surface of the bond coat increased with increased operating hours.

키워드

참고문헌

  1. Lvov, E. and Norsworthy, D., 2000, "Influence of Previous Service History on the Microstructure of Rejuvenated Superalloy Gas Turrbine Blades after their Return to Service," 4th International RRAC Conference, Welding and Repair Technology for Power Plants, Florida, pp. 3-1GT-3-20GT.
  2. Sajjadi, S. A., Nategh, S. and Guthrie, R. I. L., 2002, "Study of Microstructure and Mechanical Properties of High Performance Ni-Base Superalloy GTD-111," Material Science Engineering A, Vol. 325, pp 484-489. https://doi.org/10.1016/S0921-5093(01)01709-9
  3. Viswanathan, R., 1989, "Damage Mechanisms and Life Assessment of High-Temperature Components," ASM International, pp. 448-476.
  4. Murphy, K. S., More, K. L. and Lance,M. J., 2001, "As-Deposited Mixed Zone in Thermally Grown Oxide beneath a Thermal Barrier Coating," Surface and Coatings Technology, Vol. 146-147, pp.152-161. https://doi.org/10.1016/S0257-8972(01)01371-8
  5. Kameda, J., Bloomer, T. E., Sugita, Y., Ito, A. and Sakurai, S., 1997, "High Temperature Environmental Attack and Mechanical Degradation of Coatings in Gas Turbine Blades," Material Science Engineering A, Vol. 229, pp. 42-44. https://doi.org/10.1016/S0921-5093(97)00003-8
  6. Koo, J.-M., Seok, C.-S., Kang, M.-S., Kim, D.-J., Lee, D.-H. and Kim, M.-Y., 2010, "Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating," Trans. of KSME(A), Vol. 34, No. 4, pp. 475-480. https://doi.org/10.3795/KSME-A.2010.34.4.475
  7. Jung, A. and Schnell, A., 2008, "Crack Growth in a Coated Gas Turbine Superalloy under Thermo-Mechanical Fatigue," International Journal of Fatigue, Vol. 30, pp. 286-291. https://doi.org/10.1016/j.ijfatigue.2007.01.040
  8. Okazaki, M. and Yamano, H., 2005, "Mechanism and Mechanics of Early Growth of Debonding Crack in an APSed Ni-base Superalloy TBCs under Cycle Load," International Journal of Fatigue, Vol. 27, pp. 1613-1622. https://doi.org/10.1016/j.ijfatigue.2005.06.032