DOI QR코드

DOI QR Code

The Study of Simulation Dynamic Behavior of CFRP Structural Members

CFRP 구조 부재의 시뮬레이션 동적 거동에 관한 연구

  • Kim, Jung-Ho (Dept. of Advanced Parts and Materials Engineering, Graduate School, Chosun Univ.) ;
  • Bang, Jung-Min (Dept. of Advanced Parts and Materials Engineering, Graduate School, Chosun Univ.) ;
  • Kim, Ji-Hoon (Dept. of Mechanical Design Engineering, Chosun Univ.)
  • 김정호 (조선대학교 대학원 첨단부품소재공학과) ;
  • 방정민 (조선대학교 대학원 첨단부품소재공학과) ;
  • 김지훈 (조선대학교 기계설계공학과)
  • Received : 2010.12.10
  • Accepted : 2011.02.24
  • Published : 2011.05.01

Abstract

The structural vehicles are steel members of square or circle tube with definite shape. These members support various components and absorb impact energy to protect passengers during accidentswhen crash happen. Structural members need to be lightweight and stable. In this study, we do an impact simulation of a CFRP square member using finite element analysis program Ls-Dyna in order to predict fracture shape and energy absorb feature of CFRP member. Also, we make square member shape of CFRP and do an impact experiment. We compare the analytical and experimental results and consider the fracture shape and energy features of CFRP members.

최근 수송기계 등의 구조물에 사용되는 구조부재는 대부분이 일정 형상을 지닌 형강 혹은 중공부재를 사용한다. 특히 자동차에 사용되는 구조부재는 여러 가지 부품을 지지하고, 충돌 시 충격 에너지를 흡수하여 승객을 보호하는 역할을 한다. 최근 구조부재는 이러한 특징들로 인해 경량화와 안정성을 고려하여 개발되고 있다. 본 논문에서는 CFRP 부재의 파괴 형상과 에너지 흡수특성을 예측하기 위해 CFRP 의 사각부재 형상을 만들어 충격 실험을 하고 유한요소해석 프로그램인 LS-DYNA 를 이용하여 CFRP 사각부재의 충격 시뮬레이션을 행하였다. 실험 후, FEA 프로그램의 결과와 실제 실험의 결과를 비교하여 CFRP 부재의 복잡한 파괴 거동과 에너지 흡수 특성을 고찰하였다.

Keywords

References

  1. Farley, G.L and Jones, R.M., 1992, “Crushing Characteristics of Continuous Fiber-Reinforced Composite Tubes,” Journal of Composite Materials, Vol.26, No.1, pp. 37-50. https://doi.org/10.1177/002199839202600103
  2. Min., H.-K., 2003, “A Study on The Dynamic Behavior of Frame Type Vehicled Using Computer Simulation,” Chosun University Doctor Study.
  3. LS-DYNA3D Theory Manual, 1998, LSTC, Livemore, California.
  4. LS-DYNA Keyword User’s Manual, 1998, LSTC, Livemore, California.
  5. Han, H., 2007, "A Numerical Study on the Axial Crushing Response of Hybrid Pultruded and ${\pm}45$ Braided Tubes," Composite Structures 80, pp. 253-264. https://doi.org/10.1016/j.compstruct.2006.05.012
  6. Zarei, H., 2008, "An Experimental and Numerical Crash Worthiness Investigation of Thermoplastic Composite Crash Boxes," Composite Structures 85, pp. 245-257. https://doi.org/10.1016/j.compstruct.2007.10.028
  7. Huang, J., 2009, "Numerical and Experimental Investigation on the Axial Crushing Response of Composite Tubes," Composite Structures 91, pp. 222-228. https://doi.org/10.1016/j.compstruct.2009.05.006
  8. Mcgregor, C. J., 2007, "Simulation of Progressive Damage Development in Braided Composite Tubes Under Axial Compression," Composite: Part A 38, pp. 2247-2259. https://doi.org/10.1016/j.compositesa.2006.10.007
  9. Xiao, X., 2009, "Progress in Braided Composite Tube Crush Simulation," International Journal of Impact Engineering 36, pp. 711-719. https://doi.org/10.1016/j.ijimpeng.2008.09.006
  10. Xiao, X., "Virtual Testing of Sandwich Core Structures Using Dynamic Finite Element Simulations," Computational Materials Science.
  11. Mamalis, A.G., 2002, "Axial Collapse of Hybrid Square Sandwich Composite Tubular Components with Corrugated Core: Numerical Modeling," Composite Structures 58, pp. 571-582. https://doi.org/10.1016/S0263-8223(02)00166-6
  12. Mcgregor, C., 2009, "Finite Element Modelling of the Progressive Crushing of Braided Composite Tubes under Axial Impact," International Journal of Impact Engineering, pp. 1-11.