Study on Machining Speed according to Parameters in Micro ECM

가공 인자에 다른 미세 전해 가공 속도 변화 연구

  • Kwon, Min-Ho (School of Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Park, Min-Soo (Dept. of Product Design & Manufacturing Eng., Seoul National University of Science & Technology) ;
  • Shin, Hong-Shik (School of Mechanical and Aerospace Engineering, Seoul National Univ.) ;
  • Chu, Chong-Nam (School of Mechanical and Aerospace Engineering, Seoul National Univ.)
  • 권민호 (서울대학교 기계항공공학부) ;
  • 박민수 (서울과학기술대학교 제품설계금형공학과) ;
  • 신홍식 (서울대학교 기계항공공학부) ;
  • 주종남 (서울대학교 기계항공공학부)
  • Received : 2009.09.24
  • Accepted : 2010.11.26
  • Published : 2011.03.01

Abstract

In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

Keywords

References

  1. Sato, W., "Non-traditional Machining," Gijeonyeongusa, 1996.
  2. Schuster, R., Kirchner, V., Allongue, P. and Ertl, G., "Electrochemical Micromachining," Science, Vol. 289, No. 5476, pp. 98-101, 2000. https://doi.org/10.1126/science.289.5476.98
  3. Kock, M., Kirchner, V. and Schuster, R., "Electrochemical Micromachining with Ultrashort Volatges Pulses - a Versatile Method with Lithographical Precision," Electrochimica Acta, Vol. 48, No. 20-22, pp. 3213-3219, 2003. https://doi.org/10.1016/S0013-4686(03)00374-8
  4. Kim, B. H., Ryu, S. H., Choi, D. K. and Chu, C. N., "Micro Electrochemical Milling," Journal of Micromechanics and Microengineering, Vol. 15, No. 1, pp. 124-129, 2005. https://doi.org/10.1088/0960-1317/15/1/019
  5. Ahn, S. H., Ryu, S. H., Choi, D. K. and Chu, C. N., "Electro-chemical Micro Drilling Using Ultra Short Pulses," Precision Engineering, Vol. 28, No. 2, pp. 129-134, 2004. https://doi.org/10.1016/j.precisioneng.2003.07.004
  6. Kim, B. H., Lee, Y. S., Choi, D. K. and Chu, C. N., "Taper Reduction in Micro Electrochemical Milling Using Disk-type Electrode," Journal of the KSPE, Vol. 22, No. 4, pp. 167-172, 2005.
  7. Jeon, D. H., Kim, B. H. and Chu, C. N., "Micro Machining by EDM and ECM," Journal of the KSPE, Vol. 23, No. 10, pp. 52-59, 2006.
  8. Park, B. J., "Effects of Tool Electrode Size on Micro Electrochemical Machining Using Ultra Short Pulses," Ph.D Dissertation, School of Mechanical and Aerospace Engineering, Seoul National University, 2006.
  9. Rajurkar, K. P., Kozak, J. and Wei, B., "Study of Pulse Electrochemical Machining Characteristics," Annals of the CIRP, Vol. 42, No. 1, pp. 231-234, 1993. https://doi.org/10.1016/S0007-8506(07)62432-9
  10. Datta, M. and Landolt, D., "Electrochemical machining under pulsed current conditions," Electrochimica Acta, Vol. 26, No. 7, pp. 899-907, 1981. https://doi.org/10.1016/0013-4686(81)85053-0
  11. Fernandes, S. Z., Mehendale, S. G. and Venkatachalam, S., "Influence of frequency of alternating current on the electrochemical dissolution of mild steel and nickel," Journal of Applied Electrochemistry, Vol. 10, No. 5, pp. 649-654, 1980. https://doi.org/10.1007/BF00615488