A GENERALIZATION OF STONE'S THEOREM IN HILBERT C*-MODULES

MARYAM AMYARI a AND MAHNAZ CHAKOSHI b

ABSTRACT. Stone's theorem states that "A bounded linear operator A is infinitesimal generator of a C_0 -group of unitary operators on a Hilbert space H if and only if iA is self adjoint". In this paper we establish a generalization of Stone's theorem in the framework of Hilbert C^* -modules.

1. Introduction

Stone's theorem is a basic theorem of functional analysis, which establishes a one-to-one correspondence between the self-adjoint operators on a Hilbert space and the one-parameter families of strongly continuous unitary operators. The theorem is named after Marshall Stone [5], who formulated and proved this theorem in 1932. The Hille-Yosida theorem generalizes Stone's theorem to strongly continuous one-parameter semigroups of contractions on Banach spaces [6].

The notion of a Hilbert C^* -module is a generalization of that of a Hilbert space. It is a significant tool for studying Morita equivalence of C^* -algebras, C^* -algebra quantum group, operator K-theory and the theory of operator spaces [1, 4]. The paper organized as follows:

The first and second sections are devoted to a description of the essential properties of Hilbert C^* -modules and one parameter semigroups. In the third section we study conditions under which the adjoint of a C_0 -semigroup is a C_0 -semigroup. In the forth section, we investigate some properties of C_0 -groups of unitary operators on Hilbert C^* -modules and generalize Stone's theorem in the setting of Hilbert C^* -modules. Recently, the authors of [7] presented a Stone type theorem in the setting of Hilbert C^* -modules.

Received by the editors July 19, 2010. Revised November 29, 2010, Accepted December 24, 2010. 2000 Mathematics Subject Classification. Primary 47D06, Secondary 47L08.

Key words and phrases. C_0 -semigroup, infinitesimal generator, C_0 -group, Hilbert C^* -module, unitary operator, adjointable operator.

2. Preliminaries

Suppose \mathcal{A} is a C^* -algebra. A complex linear space \mathcal{X} is a right inner product \mathcal{A} -module if \mathcal{X} is a right \mathcal{A} -module and $\lambda(xa) = (\lambda x)a = x(\lambda a)$ and there exists an inner product $\langle .,. \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ satisfying the following conditions:

- (i) $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ iff x = 0,
- (ii) $\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$,
- $(iii)\langle x, ya\rangle = \langle x, y\rangle a,$
- (iv) $\langle x, y \rangle^* = \langle y, x \rangle$,

for all $x, y, z \in \mathcal{X}$, $a \in \mathcal{A}$ and $\mu, \lambda \in \mathbb{C}$. A Hilbert \mathcal{A} -module (Hilbert C^* -module) is an inner product \mathcal{A} -module \mathcal{X} which is complete in the norm given by $||x|| = ||\langle x, x \rangle||^{1/2}$. The notion of left Hilbert \mathcal{A} -module is similarly defined. Every C^* -algebra \mathcal{A} is a Hilbert \mathcal{A} -module with respect to the inner product $\langle x, y \rangle = x^*y$ and every inner product space is a left Hilbert \mathbb{C} -module.

Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A} -modules. A map $T: \mathcal{X} \to \mathcal{Y}$ is adjointable if there is a map $T^*: \mathcal{Y} \to \mathcal{X}$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in \mathcal{X}, y \in \mathcal{Y}$. We denote by $L(\mathcal{X}, \mathcal{Y})$ the set of all adjointable operators from \mathcal{X} into \mathcal{Y} . It is known that T is then a bounded \mathcal{A} -linear map. If $\mathcal{X} = \mathcal{Y}$, then $L(\mathcal{X})$ is a C^* -algebra with respect to the operator norm and $||T|| = ||T^*||$ for every $T \in L(\mathcal{X})$ ([4, Proposition 2.21]) and $\langle T(x), T(x) \rangle \leq ||T||^2 \langle x, x \rangle$ ([4, corollary 2.22]).

Let \mathcal{X} be a Hilbert \mathcal{A} -module. Recall that a one parameter family $\mathscr{T} = \{T(t)\}_{t\geq 0}$ of adjointable \mathcal{A} -linear operators on \mathcal{X} is called a semigroup if

- (i) T(0) = I (I is the identity operator on \mathcal{X}),
- (ii) T(s+t) = T(t)T(s) for every $t, s \ge 0$.

Furthermore \mathcal{T} is uniformly continuous if

$$\lim_{t \to 0^+} ||T(t) - I|| = 0.$$

The linear operator A defined by

$$D(A) = \left\{ x \in \mathcal{X} : \lim_{t \to 0^+} \frac{T(t)x - x}{t} \text{ exists} \right\},\,$$

$$Ax = \lim_{t \to 0^+} \frac{T(t)x - x}{t} = \frac{d^+T(t)x}{dt} \mid_{t=0} (x \in D(A))$$

is called the infinitesimal generator of the semigroup \mathscr{T} . The domain D(A) of A is a submodule of \mathcal{X} , since $xa \in D(A)$ for any $x \in D(A)$ and any $a \in \mathcal{A}$.

A semigroup $\mathscr{T} = \{T(t)\}_{t\geq 0}$ on \mathcal{X} is a strongly continuous semigroup (C_0 -semigroup) if $\lim_{t\to 0^+} T(t)x = x$ for each $x\in \mathcal{X}$.

By the same reasoning as [3, corollary 2.5] one can easily prove the following theorem.

Theorem 2.1. Suppose that \mathcal{X} is a Hilbert A-module. If A is the infinitesimal generator of a C_0 -semigroup $\mathcal{T} = \{T(t)\}_{t\geq 0}$ on \mathcal{X} , then D(A) is dense in \mathcal{X} and A is an A-linear closed operator.

Example 2.2. Consider the C^* -algebra

$$\mathcal{X} = C[0,1] = \{f : [0,1] \to \mathbb{C} ; f \text{ is continuous}\}\$$

equipped with the supremum norm. In fact, \mathcal{X} is a Hilbert C^* -module over itself. For $f \in C[0,1]$, we define $\mathcal{T}: \mathbb{R}^+ \to B(C[0,1])$ by (T(t)f)(x) = f(x+t) for $t \in \mathbb{R}^+, x \in [0,1]$. It is easy to check that T(t) is a C_0 -semigroup. The infinitesimal generator of \mathcal{T} is defined on

$$D(A) = \{ f \in \mathcal{X} : f' \text{ exists}, f' \in \mathcal{X} \text{ and } f'(0) = 0 \}$$

and

$$(Af)(x) = \lim_{t \to 0} \frac{(T(t)f)(x) - f(x)}{t} = \lim_{t \to 0} \frac{f(x+t) - f(x)}{t} = f'(x)$$

for each $x \in [0, 1]$. Hence Af = f'.

The notion of a C_0 -group and the infinitesimal generator are defined similarly, when $-\infty < t < \infty$.

Let \mathcal{X} be a Hilbert C^* -module and let $\mathcal{T} = \{T(t)\}_{-\infty < t < \infty}$ be a C_0 -group in $L(\mathcal{X})$, with the infinitesimal generator A. Then $\mathcal{T} = \{T(t)\}_{t \geq 0}$ is a C_0 -semigroup in $L(\mathcal{X})$, whose infinitesimal generator is also A. Moreover, if S(t) = T(-t) for $t \geq 0$, then $\mathcal{T} = \{S(t)\}_{t \geq 0}$ is also a C_0 -semigroup in $L(\mathcal{X})$ with the infinitesimal generator -A. Thus if $\mathcal{T} = \{T(t)\}_{-\infty < t < \infty}$ is a C_0 -group of adjointable operators in $L(\mathcal{X})$ then both A and -A are the infinitesimal generators of some C_0 -semigroups which are denoted by $\{T_+(t)\}_{t \geq 0}$ and $\{T_-(t)\}_{t \geq 0}$, respectively.

Conversely, if A and -A are the infinitesimal generators of two C_0 -semigroups $\{T_+(t)\}_{t\geq 0}$ and $\{T_-(t)\}_{t\geq 0}$, then A is the infinitesimal generator of the C_0 -group $\mathscr{T} = \{T(t)\}_{-\infty < t < \infty}$ given by

$$T(t) = \begin{cases} T_{+}(t) & t \ge 0 \\ T_{-}(-t) & t \le 0 \end{cases}$$

It is easy to check that $\overline{D(A)} = \mathcal{X}$ and A is closed. We need the next result later.

Lemma 2.3. Let \mathcal{X} be a Hilbert C^* -module and let $\mathscr{T} = \{T(t)\}_{t\geq 0}$ be a C_0 -semigroup on \mathcal{X} with the infinitesimal generator A. If $T(t)^{-1} \in L(\mathcal{X})$ and $S(t) = T(t)^{-1}$ for every t > 0, then $\mathscr{S} = \{S(t)\}$ is a C_0 -semigroup on \mathcal{X} , whose infinitesimal generator is -A. Moreover if

$$U(t) = \left\{ \begin{array}{ll} T(t) & t \ge 0 \\ T(-t)^{-1} & t \le 0. \end{array} \right.$$

then $\mathscr{U} = \{U(t)\}\ is\ a\ C_0$ -group on \mathscr{X} .

Proof. [3, Lemma 6.4]

3. The Adjoint of a Semigroup

Let \mathcal{X} be a Hilbert C^* -module and $\mathcal{T} = \{T(t)\}_{t\geq 0}$ be a C_0 -semigroup on \mathcal{X} . The family $\mathcal{T}^* = \{T(t)^*\}_{t\geq 0}$ is clearly a semigroup that is called the adjoint of the semigroup \mathcal{T} .

We now present an important condition on a C_0 -semigroup $\mathscr T$ under which $\mathscr T^*$ is a C_0 -semigroup on $\mathcal X$.

Theorem 3.1. Let \mathcal{X} be a Hilbert \mathcal{A} -module and let $\mathcal{T} = \{T(t)\}_{t\geq 0}$ be a C_0 -semigroup of contractions on \mathcal{X} . Then $\mathcal{T}^* = \{T(t)^*\}_{t\geq 0}$ is a C_0 -semigroup of contractions on \mathcal{X} .

Proof. Since $||T(t)|| = ||T(t)^*||$. It is enough to show that $\lim_{t\to 0} ||T(t)^*x - x|| = 0$ for each $x \in \mathcal{X}$. We have

$$\begin{split} \langle T(t)^*x - x, T(t)^*x - x \rangle &= \langle T(t)^*x - x, T(t)^*x \rangle - \langle T(t)^*x - x, x \rangle \\ &= \langle T(t)^*x, T(t)^*x \rangle - \langle x, T(t)^*x \rangle - \langle T(t)^*x, x \rangle + \langle x, x \rangle \\ &\leq \|T(t)\|^2 \langle x, x \rangle - \langle T(t)x, x \rangle - \langle x, T(t)x \rangle + \langle x, x \rangle \\ &\leq \langle x, x \rangle - \langle T(t)x, x \rangle - \langle x, T(t)x \rangle + \langle x, x \rangle. \end{split}$$

We know that in a C^* -algebra \mathcal{A} if $0 \le a \le b$, then $||a|| \le ||b||$. Letting $t \to 0$ we obtain,

$$\lim_{t \to 0} ||T(t)^*x - x||^2 = \lim_{t \to 0} ||\langle T(t)^*x - x, T(t)^*x - x\rangle||$$

$$\leq \lim_{t \to 0} ||\langle x, x \rangle - \langle T(t)x, x \rangle - \langle x, T(t)x \rangle + \langle x, x \rangle||$$

$$= ||\langle x, x \rangle - \langle x, x \rangle - \langle x, x \rangle + \langle x, x \rangle||$$

Then $\lim_{t\to 0} ||T(t)^*x - x|| = 0$. Hence \mathscr{T}^* is a C_0 -semigroup of contractions.

The following theorem states a relationship between the infinitesimal generator of a C_0 -semigroup of contractions and its adjoint.

Theorem 3.2. Let \mathcal{X} be a Hilbert C^* -module and let $\mathscr{T} = \{T(t)\}_{t\geq 0}$ be a C_0 -semigroup of contractions on \mathcal{X} with the infinitesimal generator A. Then A^* is the infinitesimal generator of the C_0 -semigroup \mathscr{T}^* and $D(A^*)$ is dense in \mathcal{X} .

Proof. First we show that
$$(T(t)-I)^*=T(t)^*-I$$
. For all $x,y\in\mathcal{X}$, we have
$$\langle (T(t)-I)x,y\rangle = \langle T(t)x,y\rangle - \langle x,y\rangle = \langle x,T(t)^*y\rangle - \langle x,y\rangle = \langle x,(T(t)^*-I)y\rangle.$$
 Hence $\langle x,((T(t)-I)^*-(T(t)^*-I))y\rangle = 0$. It follows that
$$\langle \frac{(T(t)-I)x}{t},y\rangle = \langle x,\frac{(T(t)-I)^*}{t}y\rangle = \langle x,\frac{T(t)^*-I}{t}y\rangle.$$

Letting $t \to 0$ we get

$$\langle Ax, y \rangle = \langle x, \lim_{t \to 0} \frac{T(t)^* - I}{t} y \rangle \quad (x \in D(A), y \in D(A^*))$$

$$\langle x, A^* y \rangle = \langle x, \lim_{t \to 0} \frac{T(t)^* - I}{t} y \rangle \quad (x \in D(A), y \in D(A^*))$$

$$\langle x, A^* y - \lim_{t \to 0} \frac{T(t)^* - I}{t} y \rangle = 0 \quad (x \in D(A), y \in D(A^*))$$

$$A^* y = \lim_{t \to 0} \frac{T(t)^* y - y}{t} \quad (y \in D(A^*)).$$

Thus A^* is the infinitesimal generator of the C_0 -semigroup \mathcal{I}^* and by Theorem [3, corollary 2.5], $D(A^*)$ is dense in \mathcal{X} .

4. A GENERALIZATION OF STONE'S THEOREM

Let \mathcal{X} be a Hilbert C^* -module. Recall that an operator $U \in L(\mathcal{X})$ is normal if $UU^* = U^*U$, is unitary if $UU^* = U^*U = I$ and is self-adjoint if $U = U^*$.

As a consequence of Theorem 3.1 and Theorem 3.2 we conclude that if \mathcal{T} is a C_0 -semigroup of unitary operators on \mathcal{X} with the infinitesimal generator A, then A^* is the infinitesimal generator of the C_0 -semigroup \mathcal{T}^* .

Recall that U is a unitary element of C^* -algebra $L(\mathcal{X})$ if and only if U is isometric and surjective [1]. It is clear that the unitary operator U is invertible and $U^* = U^{-1}$. The following theorem presents the necessity part of Stone's theorem generalized to Hilbert C^* -modules, see [7].

Theorem 4.1. If A is the infinitesimal generator of a C_0 -group of unitary operators $\mathscr{U} = \{U(t)\}_{-\infty < t < \infty}$ on a Hilbert C^* -module \mathcal{X} , then iA is a self-adjoint operator.

Proof. If A is the infinitesimal generator of a C_0 -group of unitary operators $\mathscr{U} = \{U(t)\}_{-\infty < t < \infty}$ on a Hilbert C^* -module \mathcal{X} , then A is densely defined and

$$-Ax = \lim_{t \to 0} \frac{U(-t)x - x}{t} = \lim_{t \to 0} \frac{U(t)^{-1}x - x}{t} = \lim_{t \to 0} \frac{U(t)^*x - x}{t} = A^*x$$

for every $x \in D(A)$. Thus $A = -A^*$. Hence $iA = (iA)^*$ and iA is self-adjoint.

Theorem 4.2. Let $\mathscr{T} = \{T(t)\}_{-\infty < t < \infty}$ be a C_0 -group of normal contractions on a Hilbert C^* -module with the infinitesimal generator A, then A is a normal operator.

Proof. Since T(t) is normal, $T(t)T(t)^* = T(t)^*T(t)$ for all $t \in \mathbb{R}$. For $s, t \in \mathbb{Q}$ there exist positive integers m, n, k, r such that $s = \frac{n}{m}, t = \frac{k}{r}$. Thus $T(t)T(s)^* = T(\frac{k}{r})(T(\frac{m}{n}))^* = T(\frac{1}{r})^k(T(\frac{1}{n})^m)^* = (T(\frac{1}{n})^m)^*T(\frac{1}{r})^k = T(s)^*T(t)$. The density of \mathbb{Q} in \mathbb{R} yields that $T(t)T(s)^* = T(s)^*T(t)$ for all $s, t \in \mathbb{R}$. For all $s \in D(A)$, we have

$$\begin{split} \langle A^*Ax,x\rangle &= \langle Ax,Ax\rangle \\ &= \langle \lim_{t\to 0} \frac{T(t)x-x}{t}, \lim_{s\to 0} \frac{T(s)x-x}{s} \rangle \\ &= \lim_{t,s\to 0} \frac{1}{ts} [\langle T(t)x,T(s)x\rangle - \langle T(t)x,x\rangle - \langle x,T(s)x\rangle - \langle x,x\rangle] \\ &= \lim_{t,s\to 0} \frac{1}{ts} [\langle T(s)^*x,T(t)^*x\rangle - \langle x,T(t)^*x\rangle - \langle T(s)^*x,x\rangle - \langle x,x\rangle] \\ &= \lim_{t,s\to 0} \frac{1}{ts} [\langle T(s)^*x-x,T(t)^*x-x\rangle] \\ &= \langle \lim_{s\to 0} \frac{T(s)^*x-x}{s}, \lim_{t\to 0} \frac{T(t)^*x-x}{t} \rangle \\ &= \langle A^*x,A^*x\rangle = \langle AA^*x,x\rangle. \end{split}$$

Hence $A^*A = AA^*$.

Corollary 4.3. Let $\mathscr{T} = \{T(t)\}_{-\infty < t < \infty}$ be a C_0 -group of self-adjoint contractions on a Hilbert C^* -module with the infinitesimal generator A. Then A is self-adjoint.

5. Dissipative Operators

A linear operator A is called dissipative if $\|(\lambda I - A)x\| \ge \lambda \|x\|$ for all $x \in D(A)$ and $\lambda > 0$.

Theorem 5.1. Let \mathcal{X} be a Hilbert C^* -module and A be a linear operator such that $\overline{D(A)} = \mathcal{X}$. If A is dissipative and there is a $\lambda_0 > 0$ such that $R(\lambda_0 I - A) = \mathcal{X}$, then A is the infinitesimal generator of a C_0 -semigroup of contractions on \mathcal{X} .

Proof. The proof is similar to that of [3, Theorem 4.3], since every Hilbert C^* -module is a Banach space.

The next result was stated in [7] as well via a different proof.

Theorem 5.2. Suppose \mathcal{X} is a Hilbert C^* -module. If iA is self-adjoint and there exists λ_1 such that $R(\lambda_1 I - A) = \mathcal{X}$, then the operator A is the infinitesimal generator of a C_0 -group of unitaries.

Proof. If iA is self-adjoint, then A is densely defined and $A = -A^*$. For every $x \in D(A)$ and $\lambda > 0$ we therefore have

$$\begin{aligned} \|(\lambda I - A)x\|^2 &= \|\langle (\lambda I - A)x, (\lambda I - A)x \rangle \| \\ &= \|\langle \lambda x, \lambda x \rangle - \langle \lambda x, Ax \rangle - \langle Ax, \lambda x \rangle + \langle Ax, Ax \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle - \lambda \langle x, Ax \rangle - \lambda \langle Ax, x \rangle + \langle Ax, Ax \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle - \lambda \langle A^*x, x \rangle - \lambda \langle Ax, x \rangle + \langle Ax, Ax \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle + \lambda \langle Ax, x \rangle - \lambda \langle Ax, x \rangle + \langle Ax, Ax \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle + \langle Ax, Ax \rangle \|. \end{aligned}$$

Since $\lambda^2\langle x, x\rangle$ and $\langle Ax, Ax\rangle$ are positive elements in the C^* -algebra \mathcal{A} and $\lambda^2\langle x, x\rangle + \langle Ax, Ax\rangle \geq \lambda 2\langle x, x\rangle$, by [2, Theorem 2.2.5], we get

$$\|(\lambda I - A)x\|^2 \geq \|\lambda^2 \langle x, x \rangle\|.$$

Thus $\|(\lambda I - A)x\| \ge \lambda \|x\|$ for every $x \in D(A)$ and $\lambda > 0$. Hence A is dissipative. Replacing λ_1 by $-\lambda_2$ in $R(\lambda_1 I - A) = \mathcal{X}$ we obtain $R(\lambda_2 I + A) = R(\lambda_2 I - A^*) = \mathcal{X}$. For every $x \in D(A^*)$ and $\lambda > 0$ we have

$$\begin{split} \|(\lambda I - A^*)x\|^2 &= \|\langle (\lambda I - A^*)x , (\lambda I - A^*)x \rangle \| \\ &= \|\langle \lambda x, \lambda x \rangle - \langle \lambda x, A^*x \rangle - \langle A^*x, \lambda x \rangle + \langle A^*x, A^*x \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle - \lambda \langle x, A^*x \rangle - \lambda \langle A^*x, x \rangle + \langle A^*x, A^*x \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle - \lambda \langle Ax, x \rangle - \lambda \langle A^*x, x \rangle + \langle A^*x, A^*x \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle + \lambda \langle A^*x, x \rangle - \lambda \langle A^*x, x \rangle + \langle A^*x, A^*x \rangle \| \\ &= \|\lambda^2 \langle x, x \rangle + \langle A^*x, A^*x \rangle \| \\ &\geq \|\lambda^2 \langle x, x \rangle \|. \end{split}$$

Thus $\|(\lambda I - A^*)x\| \ge \lambda \|x\|$. Hence $A^* = -A$ is dissipative.

By Theorem 5.1, A and A^* are infinitesimal generators of some C_0 -semigroups of contractions, say $\{U_+(t)\}_{t\geq 0}$ and $\{U_-(t)\}_{t\geq 0}$, respectively. Define

$$U(t) = \begin{cases} U_{+}(t) & t \ge 0 \\ U_{-}(-t) & t \le 0. \end{cases}$$

Then $\mathscr{U} = \{U(t)\}_{-\infty < t < \infty}$ is a C_0 -group. Do to I = U(t-t) = U(t)U(-t) = U(-t)U(t), we have $U(-t) = U(t)^{-1}$, $||U(t)|| \le 1$ and $||U(-t)|| \le 1$.

Since $||x|| = ||U(t)^{-1}U(t)x|| \le ||U(t)^{-1}|| ||U(t)x|| = ||U(-t)|| ||U(t)x|| \le ||U(t)x|| \le ||x||$ for every $t \in \mathbb{R}$, U(t) is an isometry.

On the other hand $U(t)U(t)^{-1} = I$, so that $R(U(t)) = \mathcal{X}$. Hence U(t) is a unitary for every $t \in \mathbb{R}$. Thus $\mathscr{U} = \{U(t)\}_{-\infty < t < \infty}$ is a C_0 -group of unitary operators on the Hilbert \mathcal{A} -module \mathcal{X} .

Note that if $\mathscr{T} = \{T(t)\}_{t\geq 0}$ is a uniformly continuous semigroup with the infinitesimal generator A in $L(\mathcal{X})$, then $\mathscr{T}^* = \{T(t)^*\}_{t\geq 0}$ is a uniformly continuous semigroup with the infinitesimal generator A^* in $L(\mathcal{X})$. Indeed, $\lim_{t\to 0} ||T(t)^* - I|| = \lim_{t\to 0} ||T(t) - I|| = 0$. We now can state Stone's theorem for uniformly continuous semigroups of unitary operators on Hilbert C^* -modules.

Corollary 5.3. A linear operator A is the infinitesimal generator of a uniformly continuous group of unitary operators on a Hilbert C^* -module \mathcal{X} if and only if iA is self-adjoint.

Proof. If A is the infinitesimal generator of a uniformly continuous group of unitary operators $\mathscr{U} = \{U(t)\}_{-\infty < t < \infty}$ on a Hilbert C^* -module \mathcal{X} , then A is bounded and

$$-A = \lim_{t \to 0} \frac{U(-t) - I}{t} = \lim_{t \to 0} \frac{U(t)^{-1} - I}{t} = \lim_{t \to 0} \frac{U(t)^* - I}{t} = A^*.$$

Conversely, if iA is self-adjoint, then the semigroup $\mathscr{T} = \{T(t)\}_{t\geq 0}$ with $T(t) = e^{-it(iA)} = e^{tA}$ is a unitary in $L(\mathcal{X})$ and its infinitesimal generator is A. If $T(t)^* = e^{-tA}$, then $\mathscr{T}^* = \{T(t)^*\}_{t\geq 0}$ is the adjoint \mathscr{T} . It follows that $\mathscr{U} = \{U(t)\}_{-\infty < t < \infty}$, where

$$U(t) = \left\{ \begin{array}{ll} T(t) & t \ge 0 \\ T^*(-t) & t \le 0. \end{array} \right.$$

is a uniformly continuous group of unitary operators with the infinitesimal generator A. Hence $\lim_{t\to 0} ||e^{tA} - I|| = 0$.

ACKNOWLEDGMENT

The authors would like to thank the referees for their useful comments.

REFERENCES

- E.C. Lance: Hilbert C*-Modules. LMS Lecture Note Series 210, Cambridge University Press, 1995.
- 2. G.J. Murphy: C*-Algebras and Operator Theory. Academic press, New York, 1990.
- 3. A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983.
- 4. I. Raeburn & D.P. Williams: *Morita Equivalence and Continuous-Trace C*-Algebras*. Mathematical surveys and Monographs AMS, 60, 1998.
- 5. M.H. Stone: On one-parameter unitary groups in Hilbert space. Ann. Math. 33 (1932), no. 3, 643-648.
- 6. K. Yosida: Functional Analysis. Springer-Verlag, 1968.
- 7. L.C. Zhang & M.Z. Guo: A Stone-type theorem (Chinese). Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 4, 857-860.

^aDepartment of Mathematics, Faculty of Science, Islamic Azad University-Mashhad Branch, Mashhad 91735, Iran

Email address: amyari@mshdiau.ac.ir, maryam_amyari@yahoo.com

^bDepartment of Mathematics, Faculty of science, Islamic Azad University-Mashhad Branch, Mashhad 91735, Iran

Email address: m-chakoshi@mshdiau.ac.ir