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AN ENERGY DENSITY ESTIMATE OF HEAT EQUATION
FOR HARMONIC MAP

Hvyun Jung KiMm

ABSTRACT. Suppose that (M, g) is a complete and noncompact Riemannian mani-
fold with Ricci curvature bounded below by —K < 0 and (N,g) is a complete
Riemannian manifold with nonpositive sectional curvature. Let u : M x [0,00}) — N
be the solution of a heat equation for harmonic map with a bounded image. We
estimate the energy density of u.

1. INTRODUCTION AND NOTATIONS

Let M and N be Riemannian manifolds of dimension m and n respectively,
and let {z*} and {y'} be the local coordinates of M and N, respectively. Let
u: M x [0,00) — N be a map that is represented by u = (u},...,u") in terms of
the above local coordinates. We say that u satisfies the heat equation for harmonic

map if it is a solution of the following nonlinear parabolic system:
j k
A1) (A= g(et) = @) (e, 0) o (2, 0) 555 (1)
for i =1,...,m, where (¢9*%) = (gap)~! and I‘j.k(y) is the Christoffel symbol at y in
N.

This heat equation for harmonic map is a nonlinear parabolic system, which has
been proved to be useful in the study of harmonic maps. The nonlinear terms, which
are due to the curvature of the target manifold, give distinct geometric meaning to
this problem.

In this paper, we provide a gradient estimate of the solution of (1.1). When the
target manifold N is R, we have several types of gradient estimate. In this case,

u: M % [0,00) — R satisfies the linear parabolic equation of the type
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(1.2) (A %)u(m, =0
In [9], Li and Yau proved the gradient estimate of the positive solution of (1.2).

Theorem 1.1 ([9]). Suppose that M is a complete Riemannian manifold with Ricci
curvature bounded below by —K < 0. Let u : M x [tg — T,t0) — R be a positive
solution to the linear heat equation (1.2). Let a > 0 and T > 0. Then for any
(z,¢) € B%(:L’o) X [to — %,to] and o > 1,

quIz 1
- —a—<C R2 +mtK

for a positive constant C > 0 depending only on the dimension n of M and o.

This gradient estimate induces a parabolic Harnack inequality, which exhibits the
phenomenon wherein the temperature at a given point in space-time is controlled
by the temperature of that point at a later time. In [7}, Hamilton proved a new
gradient estimate for the solution of the linear heat equation, that can compared
the temperatures of two different points at the same time provided the temperature
is bounded.

Theorem 1.2 ([7]). Suppose that M is a compact Riemannian manifold with Ricci
curvature bounded below by —K < 0. Let u : M x [to — T,tg) — R be a positive
solution of (1.2) with u(z,t) < L for all (z,t) € M x (0,00) and for some constant

L>0. Then
2
'V“' ( + ZK) mZ.
u . U

In this study, M is an m—dimensional noncompact manifold and N is an n—
dimensional manifold and a map u : M X [0,00) — R is a solution of (1.1), that is
a nonlinear parabolic equation. We estimate the energy density of the solution of
(1.1). These gradient estimates have been useful to derive the harnack equality, the
existence of harmonic function and the Liouville theorem and so on. We modified
the method in [2], where Cheng estimated the energy density of a harmonic map.

Now we present some notations and equations that have been used in our proof.
Let u : M x [0,00) — N be a smooth map. Choose a local orthonormal frame
{€a, %} in a neighborhood of (x,t) € M x [0,00) and a local orthonormal frame
{fi} in a neighborhood of u(z,t) € N. Let {f,,dt} and {w;} be the dual coframes
of {eq, g—t} and {f;} respectively. Let {0,3} and {w;;} be the connection forms of
M and N respectively.
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Let d = dp + (%dt denote the exterior differentiation on M x [0, 00), where ds
is the exterior differentiation on M. Then u;, is defined as

urw; = Z Uinbo + ugdt.
«
The covariant derivative u;ag of uiq is defined as
Z Uiaplp + Uiatdt = dujq — Z ujau*wﬁ — Z uig03q-
8

B J
Since duin = dasuiq + Uigedt, we have that

Z ’uiaﬁ@g =dpUin — Z Ujau*wji - Z Uiﬂgﬁa.
8 J 8

Using the orthonormal frame, the solution of (1.1), that is the heat equation for

harmonic map, can be simply expressed as
Uit = Uiaay
for i = 1,...,n. We define the energy density e(u) of u by e(u) = Y, uZ,. Then

the Bochner-type formula for the solution of (1.1), which will be of use in our proof,
is given as

(1.3) (A - = Z Uy Z Rijriuqujguawg + Z Kopuiauig

i,0,8 i,d.k.L,0,8 a,Byi
where R;;x; is the curvature tensor of N and K,g is the Ricci Curvature of M.
Consider the function p?(u(z,t)) on M x [0, 00) where p is the distance function
from a fixed point p € N. If the sectional curvature of N is nonnegative and u :
M x [0,00) — N is the solution of (1.1), we have that

(14) (B D)) = (Di{ine) — i + D) (taca, usea)) > 2e(u).

This property of p will be used in main theorem.

2. ENERGY DENSITY ESTIMATE

In this section we present an estimate of the energy density of the heat equation
for harmonic map. Our proof is a modification of the method used by Cheng [2] to
the parabolic type.

Theorem 1. Suppose that (M,g) is a complete Riemannian manifold with Ricci
curvature bounded below by —K < 0 and (N,3) is a complete and simply connected

Riemannian manifold with nonpositive sectional curvature. Let u : M x [0,00) — N
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be a solution of (1.1). Let a > 0 and T > 0. Let b1 = suppyjo,1)(p © u)(2,t). Then
for any (z,t) € Bg(zo) x (0,7}

BT B (aK + \/K)b%T)
o+ 2 —
a“t t at

e(u)(z,t) < C (-—-—* +

for some constant C > 0.

Proof. The proof given here is a modification of the method of [4] and [2], that Let

B, (o) be the closed geodesic ball of radius a > 0 and center zo in M and B, (zo) be
the closed ball, that is m = B,(x0) U dB,(xg). Let v be the distance function
in M from z¢ and let p denote the distance function in N from a point p € N. Then
we can choose a constant b > 0 such that supys, o ry(p o u)(z,t) = by <b.

Let a > 0 and T > 0. Consider the function ® : B, (%) X [0, 7] — R defined by

t (a® —7*)%e(u)
d = TV

(6% —p?ou)
Let

m t(a® — 7*)%e(u)

Ba(zo)xoT] (6% —pPou)?
Then ®(z1,0) = 0 and ®(z1,t) = 0 for z; € 3B, (xo). And the maximum of & should
occur at (21,t1) € Ba(zo) X (0,T). At (z1,¢1) € Ba(zg) X (0, T}, ® has the following
properties :

Q(-’El’ tl) =

Alog ®(z1,t1) <0, dlog®(z1,t1) =0 and g—tlogfb(xl,t;) >0.

Rewriting these at (z1,¢1), we have
—2dv?  de(n) 2d(p?ou)
(a2—1%)  e(w)  (B*—pPou)
—2Ay% 2?2 (A-E)e(uw) |de(w)?
(2.2) 02 (0,2 - 72) + ((12 “ 72)2 C(U) - e(u)Z
28-F)pPow)  AdPou)? 1

(2.1) 0=

G—pPou)  (BB-proup ¢

Schwartz’s inequality implies

(2.3) |de(u)[? < 4 ( > uga,,) e(u).

ia,f
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Using the Bochner type formula (1.3) and our assumption of the curvatures, we get
that

1 |de(w)|?
2 e(u)

0
(2.4) (A—- a)e(u) > —2Ke(u).

By the Gauss lemma and the Schwartz inequality, we get that |dp?(u)| < 2p(u)+/e(u)
and |dy| = 1. And the Hessian comparison theorem in [12] implies that

AY? = 2P+ 29Dy > 2+2(n—1)(147) = Co(1 + VER)

for some constant Cp > 0. Putting (1.4), (2.1) and (2.4) to (2.2), we have that

1 —_9A 2 212 2 2 4
0> 1y 2 AP Adrldfoud . delw)
t a?—92 (a®2—-92)? (a? —72)(b2 - plou) (b2 — p?ou)
— 2 2
> R 200(21 + \2/R7) 162 167(p? o u) )
t P @77 @-PD(E-Pouw
de(u)
@ —pPou)

As in [4], we have that,

647%(p* o)  (b° - p?ou)

@-7 2

LCo(l+ VEY) (B —pou) 8770 —p?ou)
@ - (2 =)

e(u)(z1,t1) Smax{ + K (b — p?ou)

T=T1

If (:l‘,t) € B% (xo) X (O, T], then

t(a? — v%)%e(u
oo

t1 (a® — v%)%e(uv)
= S
6i(Pouty  (a¥—7)? i K(a - )’
B ol ® AP-Pow T (B-Fou)
+Cot1(1 + \/I_('y)(a2 —7%) + 819>
- ow #—ou)

Smax{

T=r]

212 4 4 2 2
< max | 169 flT, ot TKa +co(1+a\/f)a T, 2a
g B B B g
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where 8 = inf{(¥? — p? ou)(z) : x € B,(xo)}. Therefore for any (z,t) € Bg (o) x
(0, T], we have that
16a202T (B2 — p*ou)?  a* (b?—p?ou)® Ka'T (8% — p? o u)?
< 1
e(u)(z,t) < { Bt (-2 4F% (a2 - 2) Y (@ = 42)2
00(1 + aVK)a*T (b - p? o u)? N 202T (6% — p? o u)?
B @R g @
26T 84 16KVT 16Co(1 + avE)b%, | 3T
9322t 9,8t 96t 90243 9a2pt

< max

Letting b = v/2b;, we get that 23 = b% — b2 and B = b?. Therefore we can have a
constant C > 0 that

256637 802 GAKBIT 64Co(1 + aVE)B3T  12803T
< 1 st 1 1 1
e(u)(z?) < max{ 9a2t ' Ot + t + a’t + 9a2t
2 2 2
SC(b:r B +(aK+\/_I?)b1T>.
2t t at

O

When the manifold (M, g) has nonnegative Ricci curvature, we have the simple
gradient estimate which is shown below.

Corollary 1. Suppose that M is a complete noncompact Riemannian manifold
with nonnegative Ricci curvature and (N,§) is a complete and simply connected
Riemannian manifold with nonpositive sectional curvature. Letu : M x [0,00) —
N be a solution of (1.1) with the bounded image . Let T be a positive constant and
b1 = Supprx[o,e0) (P © u)(z,t) < 00. Then we have that for any (z,t) € M x (0,T)

b2
e(u)(z,t) < C—tl—,
for some constant C > 0.

Proof. Since M has nonnegative Ricci curvature, the lower bound of Ricci curvature
of M is K = 0. By Theorem 1, for any a > 0 and for any (z,t) € Ba (zo) x (0,T],

BT b
e(u)(mt)<0(1 +t)'
As a — 00, our theorem is proved. O
We can deduce the Liouville theorem from the energy density estimate of the
heat equation for harmonic map.



AN ENERGY DENSITY ESTIMATE OF HEAT EQUATION FOR HARMONIC MAP 85

Corollary 2. Suppose that (M,g) is a complete Riemannian manifold with non-
negative Ricci curvature and (N,§) is a complete and simply connected Riemannian
manifold with nonpositive sectional curvature. Let u : M x [0,00) — N is a solution
of (1.1) with bounded image. Then u(-,t) converges uniformly to a constant map
that is also a harmonic map.

Proof. Since the image of u from M x [0,00) is bounded, u(z,t) converges on N
as t — 0o. By Theorem 4.3 in [10], u(-,t) converges uniformly to a harmonic map
Uoo(+) with their first and second derivatives as t goes to 0o. Using Corollary 1, we
have that

eltoe) = Jim e(u)(z, )

T t—o0

b2
< lim C-tl = 0.

Therefore, the energy density of u., is zero and so the harmonic map u is constant.
O
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