DOI QR코드

DOI QR Code

Analysis of thermal changes in bone by various insertion torques with different implant designs

서로 다른 형태의 임플란트의 식립토크가 골에 미치는 열변화에 관한 연구

  • Kim, Min-Ho (Department of Prosthodontics, College of Dentistry, Seoul National University) ;
  • Yeo, In-Sung (Department of Prosthodontics, College of Dentistry, Seoul National University) ;
  • Kim, Sung-Hun (Department of Prosthodontics, College of Dentistry, Seoul National University) ;
  • Han, Jung-Seok (Department of Prosthodontics, College of Dentistry, Seoul National University) ;
  • Lee, Jai-Bong (Department of Prosthodontics, College of Dentistry, Seoul National University) ;
  • Yang, Jae-Ho (Department of Prosthodontics, College of Dentistry, Seoul National University)
  • 김민호 (서울대학교 치과대학 치과보철학교실) ;
  • 여인성 (서울대학교 치과대학 치과보철학교실) ;
  • 김성훈 (서울대학교 치과대학 치과보철학교실) ;
  • 한중석 (서울대학교 치과대학 치과보철학교실) ;
  • 이재봉 (서울대학교 치과대학 치과보철학교실) ;
  • 양재호 (서울대학교 치과대학 치과보철학교실)
  • Received : 2010.10.19
  • Accepted : 2011.03.14
  • Published : 2011.04.29

Abstract

Purpose: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs. Materials and methods: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of $36.5^{\circ}C$ and the other half was exposed to ambient temperature of $25^{\circ}C$, so that the inner and surface temperatures reached $36.5^{\circ}C$ and $28^{\circ}C$, respectively. Two types of implants ($4.5{\times}10\;mm$ Br${\aa}$nemark type, $4.8{\times}10\;mm$ Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of $4\;cm{\times}4\;cm{\times}2\;cm$ and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1. Results: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Br${\aa}$nemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Br${\aa}$nemark) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques. Conclusion: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.

연구 목적: 임플란트 식립시에 발생할 수 있는 열변화는 임플란트의 실패를 초래할 수 있다. 식립토크에 따른 열변화 양상을 파악함으로 임플란트의 형태에 따른 차이점과 적절한 식립토크가 어떤 것인지 파악하고자 한다. 연구 재료 및 방법: 실험재료로는 두께 15 - 20 mm의 소 견갑골을 가로 35 mm, 세로 40 - 50 mm 크기가 되도록 골편으로 자르고 이중에 피질골의 두께가 2 - 3 mm 되는 표본을 선정한 후 표본의 반을 $36.5^{\circ}C$ 수조에 실온 $25^{\circ}C$에 노출 시켜 내부 온도는 평균 $36.5^{\circ}C$, 표면온도 $28^{\circ}C$가 되도록 설계하였다. $4.5{\times}10\;mm$의 외부육각을 가지는 Br${\aa}$nemark 형태의 임플란트와 $4.8{\times}10\;mm$의 Microthread 형태를 지니는 내부연결 형태의 임플란트를 과도한 식립토크로 식립하고 온도 측정은 계측점에서 0.2 mm 이내에 열전대를 위치시켜 기록하였다. 삼차원유한요소 분석은 골의 형태를 가로 4 cm, 세로 4 cm, 높이 2 cm의 직육면체로 가정하고, 직육면체 윗면에서 2 mm까지를 피질골, 그 아랫부분을 해면골이라고 가정하였다. 마찰열은 매식이 종료된 상황에서 골에 남는 cavity 모양을 기초로 경계조건을 부여하였다. CAD 프로그램인 SolidWorks 소프트웨어를 이용하였고, 이를 유한요소 구조해석용 프로그램인 Abaqus 6.9-1로 불러들여 해석하였다. 결과 및 결론: In vitro실험에서 Microthread type의 임플란트가 상대적으로 더 높은 최고점 온도를 보여주고 있으며 이는 임플란트의 형태에 따른 마찰열 발생이 주요 원인으로 보인다. 유한요소분석을 통해 살펴본 결과 Br${\aa}$nemark 형태의 임플란트의 경우 50 Ncm이상에서 Microthread를 가지는 형태의 경우에는 35 Ncm이상에서 Eriksson 등이 보고한 역치를 초과하는 온도가 발생하였다. 이를 통해 볼 때 Microthread type 이 식립토크에 따른 온도 증가가 더 민감함을 알 수 있다. 실험결과를 통해서 서로 다른 형태의 임플란트 식립시에 임플란트의 형태에 따라 적절한 삽입토크를 부여하는 것이 성공적인 임플란트 시술에 중요한 요소 중에 하나임을 알 수 있었다. 특히 Microthread를 갖는 임플란트 형태는 높은 초기고정성을 얻을 수 있다는 장점이 있는 반면 과도한 식립 토크로 인한 열 손상 가능성을 가질 수 있으므로 골량과 골질의 신중한 평가와 적절한 수술기법이 필요할 것으로 생각된다.

Keywords

References

  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
  2. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416. https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Adell R, Lekholm U. Surgical procedures. In: Zarb GA. Branemark PI, Albrektsson T, eds. Tissue-integrated prostheses: Osseointegration in clinical dentistry. Chicago: Quintessence Publishing 1985, pp. 1-35.
  4. Bass SL, Triplett RG. The effects of preoperative resorption and jaw anatomy on implant success. A report of 303 cases. Clin Oral Implants Res 1991;2:193-8. https://doi.org/10.1034/j.1600-0501.1991.020406.x
  5. Hutton JE, Heath MR, Chai JY, Harnett J, Jemt T, Johns RB, McKenna S, McNamara DC, van Steenberghe D, Taylor R, et al. Factors related to success and failure rates at 3-year follow-up in a multicenter study of overdentures supported by Branemark implants. Int J Oral Maxillofac Implants 1995;10:33-42.
  6. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-6.
  7. Truhlar RS, Morris HF, Ochi S, Winkler S. Second-stage failures related to bone quality in patients receiving endosseous dental implants: DICRG Interim Report No. 7. Dental Implant Clinical Research Group. Implant Dent 1994;3:252-5. https://doi.org/10.1097/00008505-199412000-00008
  8. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol 1991;62:2-4. https://doi.org/10.1902/jop.1991.62.1.2
  9. Levine RA, Clem DS 3rd, Wilson TG Jr, Higginbottom F, Saunders SL. A multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: preliminary results at 6 or more months of loading. Int J Oral Maxillofac Implants 1997;12:237-42.
  10. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-32. https://doi.org/10.1016/S0022-3913(03)00212-9
  11. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-7. https://doi.org/10.1016/0022-3913(83)90174-9
  12. Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144-53. https://doi.org/10.1034/j.1600-0501.2002.130204.x
  13. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system. Design and engineering. Int J Periodont Restorative Dent 1993;13:409-31.
  14. Misch CE. Implant design considerations for the posterior regions of the mouth. Implant Dent 1999;8:376-86. https://doi.org/10.1097/00008505-199904000-00008
  15. Strong JT, Misch CE, Bidez MW, Nalluri P. Functional surface area: thread form and diameter optimization for implant body design. Compendium 1998;19:4-9.
  16. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res 1997;8:290-8. https://doi.org/10.1034/j.1600-0501.1997.080407.x
  17. Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66. https://doi.org/10.1016/S0022-3913(99)70243-X
  18. Norton MR. In vitro evaluation of the strength of the conical implant-to-abutment joint in two commercially available implant systems. J Prosthet Dent 2000;83:567-71. https://doi.org/10.1016/S0022-3913(00)70016-3
  19. Fish J, Belytschko T. A first course in finite elements. John Willey & Sons, 2007.
  20. Chen HL, Gundjian AA. Specific heat of bone. Med Biol Eng Comput 1976;14:548-50. https://doi.org/10.1007/BF02478055
  21. Davim JP, Marques N. Dynamical experimental study of friction and wear behaviour of bovine cancellous bone sliding against a metallic counterface in a water lubricated environment. J Mater Proc Tech 2004;152:389-94. https://doi.org/10.1016/j.jmatprotec.2004.04.420
  22. Sean RH Davidson, David F. James. Measurement of thermal conductivity of bovine cortical bone. Med Eng Phy 2000;22:741-7. https://doi.org/10.1016/S1350-4533(01)00003-0
  23. Hosokawa A, Otani T. Ultrasonic wave propagation in bovine cancellous bone. J Acoust Soc Am 1997;101:558-62. https://doi.org/10.1121/1.418118
  24. Esposito M, Hirsch J, Lekholm U, Thomsen P. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature. Int J Oral Maxillofac Implants 1999;14:473-90.
  25. Esposito M, Thomsen P, Ericson LE, Sennerby L, Lekholm U. Histopathologic observations on late oral implant failures. Clin Implant Dent Relat Res 2000;2:18-32. https://doi.org/10.1111/j.1708-8208.2000.tb00103.x
  26. Lundskog J. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg 1972;9:1-80.
  27. Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 1983;50:101-7. https://doi.org/10.1016/0022-3913(83)90174-9
  28. Sevitt S. Local vascular changes in burned skin. Proc R Soc Med 1954;47:225-8.
  29. O'Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res 2000;2:85-92. https://doi.org/10.1111/j.1708-8208.2000.tb00110.x
  30. Park JH, Lim YJ, Kim MJ, Kwon HB. The effect of various thread designs on the initial stability of taper implants. J Adv Prosthodont 2009;1:19-25. https://doi.org/10.4047/jap.2009.1.1.19
  31. Huh JB, Ko SM. The comparative study of thermal inductive effect between internal connection and external connection implant in abutment preparation. J Korean Acad Prosthodont 2007;45:60-70.
  32. Cho JM, Cho U, Yun MJ, Jeong CM, Jeon YC. Influence of implant diameter and length changes on initial stability J Korean Acad Prosthodont 2009;47:335-41. https://doi.org/10.4047/jkap.2009.47.3.335
  33. Kim SH, Kim SJ, Lee KW, Han DH. The effects of local factors on the survival of dental implants: A 19 year retrospective study. J Korean Acad Prosthodont 2010;48:28-40. https://doi.org/10.4047/jkap.2010.48.1.28