Effect of Cobalt (II) on the Fertilization and Embryo Development of the Sea Urchin ($Hemicentrotus$ $pulcherrimus$)

코발트(II)가 말똥성게($Hemicentrotus$ $pulcherrimus$)의 수정 및 배아 발생에 미치는 영향

  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Ryu, Hyang-Mi (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Choi, Yong-Hwan (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Lee, Seung-Min (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Kang, Han-Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 류향미 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 최용환 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이승민 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 강한승 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2011.08.23
  • Accepted : 2011.10.15
  • Published : 2011.11.30

Abstract

Cobalt is a naturally occurring element found in rocks, soil, water and/or is among the harmful pollutants as generated by industrialized. In the environment, cobalt has two oxidation states, cobalt (II) (Co (II)) and cobalt (III) (Co (III)). If coastal water is contaminated by cobalt, it through the food chain can have an impact on marine ecosystems. Therefore, we examined the gametotoxic and embryotoxic effects of Co (II) at various concentrations (10, 100, 500, 1000, 2500 ppb) in the sea urchin $Hemicentrotus$ $pulcherrimus$. Spawning was induced by injecting 1 mL of 0.5 M KCl into coelomic cavity. Males released white or cream-colored sperms and females released yellow or orange-colored eggs. Experiment was begun within 30 min the collection of both gametes. The fertilization and embryo development rates test were performed for 10 min and 64 h after fertilization, respectively. The fertilization rates in the control condition (not including Co (II)) and experimental group were not significantly changed. The embryo development rates in the control condition were greater than 90% and were significantly decreased with concentration dependent manner. The normal embryogenesis rate was significantly inhibited in exposed to cobalt (II) ($EC_{50}$=71.84 ppb, 95% Cl=16.71-203.36 ppb). The NOEC and LOEC of normal embryogenesis rate were <10 ppb and 10 ppb, respectively. These results suggest that the early embryo stages of $H.$ $pulcherrimus$ have toxic effect at greater than 10 ppb of Co (II) concentration.

코발트는 자연적으로 암석, 토양 물 등에서 발견되는 요소일 뿐만 아니라 산업화에 의해 생성되는 유해물질 중의 하나이다. 환경에서는 코발트 (II)와 코발트 (III)의 두 가지 산화물로 존재하며, 연안 해역으로 유입 시 먹이연쇄를 통해 해양생태계 전반에 영향을 미칠 수 있다. 따라서 본 연구는 유용 수산생물로써 조간대 암반 지역에 서식하는 말똥성게($Hemicentrotus$ $pulcherrimus$)를 이용하여 cobalt (Co (II); 10, 100, 500, 1000, 2500 ppb)가 배우자 및 배아에 미치는 독성 영향을 조사하였다. 성숙한 말똥성게($H.$ $pulcherrimus$) 체강에 0.5 M KCl를 주입하여 방란 및 방정을 유도하였으며 수컷은 흰색 또는 크림색 정자를 분비하고 암컷은 노란색 또는 오렌지색 난자를 분비하였다. 실험은 30분 내에 배우자를 수집한 후 실행하였다. 수정률 및 배아 발생률을 조사하기 위한 실험은 수정 후 각각 10분 및 64시간 실시하였다. 수정률은 대조군과 실험군과의 유의적인 변화가 없었다. 배아발생률은 대조군에서 90% 이상 나타났고 실험군에서는 농도 의존적으로 유의적인 감소를 나타냈다. 말똥성게($H.$ $pulcherrimus$)의 정상 배아 발생에 대한 Co (II)의 독성치는 반수영향농도($EC_{50}$) 71.84 ppb와 95% Cl 16.71~203.36 ppb로 나타났다. 또한 무영향농도(NOEC)는 <10 ppb로 나타났고, 최소영향농도(LOEC)는 10 ppb로 나타났다. 본 연구 결과, Co (II)가 연안해역에 유입시, 10 ppb 이상의 농도로 존재할 경우 말똥성게($H.$ $pulcherrimus$)와 같은 연안정착성 생물의 초기 배아 발생단계는 심각한 영향을 받을 것으로 사료된다.

Keywords

References

  1. Agca C, WH Klein and JM Venuti. 2009. Respecification of ectoderm and altered nodal expression in sea urchin embryos after cobalt and nickel treatment. Mechanisms of Development 126:430-442. https://doi.org/10.1016/j.mod.2009.01.005
  2. Chatterjee J and C Chatterjee. 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ. Pollut. 109:69-74. https://doi.org/10.1016/S0269-7491(99)00238-9
  3. Crossley DA, ER Blood, PF Hendrix and TR Seastedt. 1995. Turnover of cobalt-60 by earthworms (Eisenia foetida) (Lumbricidae, Oligochaeta). Appl. Soil Ecol. 2:71-75. https://doi.org/10.1016/0929-1393(94)00045-9
  4. Davidson EH, RA Cameron and A Ransick. 1998. Specification of cell fate in the sea urchin embryo: Summary and some proposed mechanisms. Development 125:3269-3290.
  5. Fricker LD. 1988. Carboxypeptidase E. Annu. Rev. Physiol. 50:309-321. https://doi.org/10.1146/annurev.ph.50.030188.001521
  6. Gottschalk G. 1979. Bacterial metabolism. Spring-Verlag, New York.
  7. Greenwood PJ. 1983. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of temperature, concentration and exposure time on fertilization. Aqua. Toxicol. 4:15-29. https://doi.org/10.1016/0166-445X(83)90058-9
  8. Han M, KM Hyun, M Nili, IY Hwang and JK Kim. 2009. Synergistic effects of ionizing radiation and mercury chloride on cell viability in fish hepatoma cells. Korean J. Environ. Biol. 27:140-145.
  9. Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.
  10. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009a. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
  11. Hwang UK, CW Rhee, KS Kim, HC Kim, KH An and SY Park. 2009b. Toxicity assessment of ocean dumping wastes using fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Toxicol. 24:25-32. https://doi.org/10.1002/tox.20388
  12. Hwang UK, HM Ryu, SG Kim, JS Park and KH An. 2010. Toxicity assessment of ocean dumping wastes using fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 25:11-18.
  13. Kobayashi N. 1973. Studies on the effects of some agents on fertilized sea urchin eggs, as a part of the bases for marine pollution bioassay I. Publ. Seto. Mar. Biol. Lab. 21:109-114.
  14. Kobayashi N. 1977. Preliminary experiments with sea urchin pluteus and metamorphosis in marine pollution bioassay. Publ. Seto. Mar. Biol. Lab. 24:9-21.
  15. Kobayashi N. 1981. Comparative toxicity of various chemicals, oil extracts and oil dispersant to Canadian and Japanese sea urchin eggs. Publ. Seto. Mar. Biol. Lab. 27:76-84.
  16. Kobayashi N. 1995. Bioassay data marine pollution using echinoderms. Encyclpedia of Environmental Control Technology 9:539-609.
  17. Krauskopf KB and DK Bird. 1995. Introduction to geochemistry. New York: McGraw Hill.
  18. Lee Y and BM Tebo. 1994. Cobalt (II) oxidation by the marine manganese (II)-oxidizing Bacillus sp. Strain SG-1. Appl. Environ. Microbiol. 2949-2957.
  19. Martin JM and M Whitfield. 1983. The significance of river input of chemical elements to the ocean. In Trace Metals in Sea Water. New York. pp. 265-296.
  20. Monroy A. 1986. A centennial debt of developmental biology to the sea urchin. Biol. Bull. 171:509-519. https://doi.org/10.2307/1541620
  21. Nagpal NK. 2004. Water quality guidelines for cobalt. Ministry of water, land and air protection, water protection section, water, air and climate change branch, Victoria.
  22. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985a. Ph-induced changes in mitotic and development patterns in sea urchin embryogenesis, I. Exposure of embryos. Teratogenesis Carcinog Mutagen 5:101-112. https://doi.org/10.1002/tcm.1770050204
  23. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985b. Ph-induced changes in mitotic and development patterns in sea urchin embryogenesis, II. Exposure of sperm. Teratogenesis Carcinog Mutagen 5:113-121. https://doi.org/10.1002/tcm.1770050205
  24. Palit S, A Sharma and G Talukder. 1994. Effects of cobalt on plants. Bot. Rev. 60:149-181. https://doi.org/10.1007/BF02856575
  25. Pan P and NJ Susak. 1991. The speciation of cobalt in seawater and freshwater at 25${^{\circ}C}$. Geochem. J. 25:411-420. https://doi.org/10.2343/geochemj.25.411
  26. Phillips DJH and DA Segar. 1986. Use of bioindicators in monitoring conservative contaminants: programme design imparatives. Mar. Pollut. Bull. 17:10. https://doi.org/10.1016/0025-326X(86)90797-6
  27. Smith IC and BL Carson. 1981. Trace metals in the environment. Cobalt, vol. 6. Ann Arbor: Ann Arbor Science Publ. Inc.
  28. Szakmary E, G Ungvary, A Hudak, E Tatrai, M Naray and V Morvai. 2001. Effects of cobalt sulfate on prenatal development of mice, rats, and rabbits, and on early postnatal development of rats. J. Toxicol. Environ. Health A. 62:367-386. https://doi.org/10.1080/152873901300018110
  29. Wui IS, JB Lee and SH Yoo. 1992. Bioassay on marine sediment pollution by using sea urchin embryo culture in the southwest inland sea of Korean. J. Environ. Biol. 10:92-99.
  30. Xue X, W Xia, L Yan, W Yonghua and W Yuan. 2011. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin glyptocidaris crenularis. Hum. Exp. Toxicol. 30:1009-1021. https://doi.org/10.1177/0960327110385958
  31. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor. J. Env. Hlth. Soc. 24:6-10.