DOI QR코드

DOI QR Code

On-Chip Design-for-Testability Circuit for RF System-On-Chip Applications

고주파 시스템 온 칩 응용을 위한 온 칩 검사 대응 설계 회로

  • 류지열 (부경대학교 정보통신공학과) ;
  • 노석호 (안동대학교 전자공학과)
  • Received : 2010.10.18
  • Accepted : 2010.11.10
  • Published : 2011.03.31

Abstract

This paper presents on-chip Design-for-Testability (DFT) circuit for radio frequency System-on-Chip (SoC) applications. The proposed circuit measures functional specifications of RF integrated circuits such as input impedance, gain, noise figure, input voltage standing wave ratio (VSWRin) and output signal-to-noise ratio (SNRout) without any expensive external equipment. The RF DFT scheme is based on developed theoretical expressions that produce the actual RF device specifications by output DC voltages from the DFT chip. The proposed DFT showed deviation of less than 2% as compared to expensive external equipment measurement. It is expected that this circuit can save marginally failing chips in the production testing as well as in the RF system; hence, saving tremendous amount of revenue for unnecessary device replacements.

본 논문은 고주파 시스템 온 칩 응용을 위한 온 칩 검사 대응 설계 (Design-for-Testability, DFT) 회로를 제안한다. 이러한 회로는 고주파 회로의 주요 성능 변수들 즉, 입력 임피던스, 전압이득, 잡음지수, 입력 전압 정재비 (VSWRin) 및 출력 신호대 잡음비 (SNRout)를 고가의 장비없이 측정 가능하다. 이러한 고주파 검사 회로는 DFT 칩으로부터 측정된 출력 DC 전압에 실제 고주파 소자의 성능을 제공하는 자체 개발한 이론적인 수학적 표현식을 이용한다. 제안한 DFT 회로는 외부 장비를 이용한 측정 결과와 비교해 볼 때 고주파 회로의 주요 성능 변수들에 대해 5.25GHz의 동작주파수에서 2%이하의 오차를 각각 보였다. DFT 회로는 고주파 소자 생산뿐만 아니라 시스템 검사 과정에서 칩들의 성능을 신속히 측정할 수 있으므로 불필요한 소자 복사를 위해 소요되는 엄청난 경비를 줄일 수 있으리라 기대한다.

Keywords

References

  1. J.-Y. Ryu and S.-H. Noh, "A New Design-for- Testability Circuit for Low Noise Amplifiers," Journal of Korea Institute of Telematics and Electronics, Vol. 43, No. 3, pp. 317-326, March 2006.
  2. J.-Y. Ryu, B. C. Kim, S.-T. Kim, and V. Varadarajan, "Novel Defect Testing of RF Front End UsingInput Matching Measurement," 9th IEEE IMSTW, Vol. 9, pp. 31-34, June 2003.
  3. D. Lupea, U. Pursche and H.-J. Jentschel, "RF-BIST: Loopback Spectral Signature Analysis," IEEE Proc. of the 2003 DATE Conference and Exhibition, pp. 478-483, Mar. 2003.
  4. J. Dabrowski, "BiST Model for IC RF-Transceiver Front-End," 2003 Proceedings of the 18th IEEE Int. Sym. on DFT in VLSI SYSTEMS, pp. 295-302, Nov. 2003.
  5. B. R. Veillette and G. W. Roberts, "A Built-in Self-Test Strategy for Wireless Communication Systems," Proceedings of the 1995 ITC, pp. 930-939, Oct. 1995.
  6. M. Soma, "Challenges and Approaches in Mixed Signal RF Testing," IEEE Proc., pp. 33-37, 1997.
  7. J.-Y. Ryu, B.C. Kim and I. Sylla, "A New BIST Scheme for 5GHz Low Noise Amplifiers," IEEE 9th European Test Symposium, pp. 228-233, 2004.
  8. J.-Y. Ryu and S.-H. Noh, "Novel Defect Testing of RF Front End Using Input Matching Measurement," Conference of The Korean Institute Of Maritime information & Communication Science, Vol. 7, No. 2, pp. 818-823, October 2003.
  9. J.-Y. Ryu and S.-H. Noh, "A New RF Test Circuit on a DFT Technique," Conference of The Korean Institute Of Maritime information & Communication Science, Vol. 10, No. 1, pp. 902-905, May 2006.
  10. G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design 2nd Edition, Prentice Hall, pp. 212-293, 1997.
  11. Gray, Hurst, Lewis and Meyer, Analog and Design of Analog Integrated Circuits 4th Edition, New York: John Wiley & Sons, Inc., 2001.