The Lipopolysaccharide from Porphyromonas gingivalis Induces Vascular Permeability

  • Kim, Su-Ryun (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Jeong, Seong-Kyoon (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, Woo-Sik (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Jeon, Hwa-Jin (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Park, Hyun-Joo (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, Mi-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Jang, Hye-Ock (Department of Dental Pharmacology, School of Dentistry, Pusan National University) ;
  • Yun, Il (Department of Dental Pharmacology, School of Dentistry, Pusan National University) ;
  • Bae, Soo-Kyung (Department of Dental Pharmacology, School of Dentistry, Pusan National University) ;
  • Bae, Moon-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University)
  • Received : 2011.01.04
  • Accepted : 2011.02.11
  • Published : 2011.03.31

Abstract

Porphyromonas gingivalis, one of the major periodontal pathogens, is implicated in the initiation and progression of periodontal disease. The initial stages of periodontal inflammation are accompanied by vascular hyperpermeability. In our present study, we report that the P. gingivalis lipopolysaccharide (LPS) increases the mRNA expression of interleukin-8 (IL-8), a major inducer of vascular permeability, in vascular endothelial cells. P. gingivalis LPS also stimulated the induction of IL-8 secretion in endothelial cells. The P. gingivalis LPS-induced expression of IL-8 was primarily modulated by nuclear factor-${\kappa}$B(NF-${\kappa}$B). P. gingivalis LPS significantly enhanced the vascular permeability both in vitro and in vivo, and a blockade of the IL-8 receptor decreased the P. gingivalis LPS-induced vascular permeability. Taken together, these results suggest that P. gingivalis LPS increases vascular permeability through the NF-${\kappa}$B-dependent production of IL-8 in vascular endothelial cells.

Keywords

References

  1. Amar S, Han X. The impact of periodontal infection on systemic diseases. Med Sci Monit. 2003;9:RA291-9.
  2. Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol. 1994;55:97-179.
  3. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol. 2002;39:225-37. https://doi.org/10.1016/S1537-1891(03)00011-9
  4. Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S. Periodontal disease and cardiovascular disease. J Periodontol. 1996;67:1123-37. https://doi.org/10.1902/jop.1996.67.10s.1123
  5. Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J. 2004;382:393-409. https://doi.org/10.1042/BJ20040544
  6. Biffl WL, Moore EE, Moore FA, Carl VS, Franciose RJ, Banerjee A. Interleukin-8 increases endothelial permeability independent of neutrophils. J Trauma. 1995;39:98,102;discussion 102-3.
  7. Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J. 1999;138:S534-6. https://doi.org/10.1016/S0002-8703(99)70294-2
  8. Egelberg J. The blood vessels of the dento-gingival junction. J Periodontal Res. 1966;1:163-79. https://doi.org/10.1111/j.1600-0765.1966.tb01857.x
  9. Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem. 2000;275:11058-63. https://doi.org/10.1074/jbc.275.15.11058
  10. Fukumoto T, Matsukawa A, Yoshimura T, Edamitsu S, Ohkawara S, Takagi K, Yoshinaga M. IL-8 is an essential mediator of the increased delayed-phase vascular permeability in LPS-induced rabbit pleurisy. J Leukoc Biol. 1998;63:584-90. https://doi.org/10.1002/jlb.63.5.584
  11. Gavard J, Hou X, Qu Y, Masedunskas A, Martin D, Weigert R, Li X, Gutkind JS. A role for a CXCR2/phosphatidylinositol 3-kinase gamma signaling axis in acute and chronic vascular permeability. Mol Cell Biol. 2009;29:2469-80. https://doi.org/10.1128/MCB.01304-08
  12. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M. Multiple control of interleukin-8 gene expression. J Leukoc Biol. 2002;72:847-55.
  13. Kim SR, Park HJ, Bae SK, Park JH, Kim HS, Koo TH, Bae MK. Porphyromonas gingivalis lipopolysaccharide increases monocyte adhesion to microvascular endothelium by induction of adhesion molecules. Int J Oral Biol. 2008;33:149-54.
  14. Koo TH, Jun HO, Bae SK, Kim SR, Moon CP, Jeong SK, Kim WS, Kim GC, Jang HO, Yun I, Kim KW, Bae MK. Porphyromonas gingivalis, periodontal pathogen, lipopolysaccharide induces angiogenesis via extracellular signal-regulated kinase 1/2 activation in human vascular endothelial cells. Arch Pharm Res. 2007;30:34-42. https://doi.org/10.1007/BF02977776
  15. Lee SM, Lee HW, Lee JY. Porphyromonas gingivalis invasion of human aortic smooth muscle cells. Int J Oral Biol. 2008;33:163-77.
  16. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 2003;170:3369-76. https://doi.org/10.4049/jimmunol.170.6.3369
  17. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-74. https://doi.org/10.1038/nature01323
  18. Mao S, Maeno N, Matayoshi S, Yoshiie K, Fujimura T, Oda H. The induction of intercellular adhesion molecule-1 on human umbilical vein endothelial cells by a heat-stable component of porphyromonas gingivalis. Curr Microbiol. 2004;48:108-12. https://doi.org/10.1007/s00284-003-4071-z
  19. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA,Jr. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2:253-8. https://doi.org/10.1016/S1097-2765(00)80136-7
  20. Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A. The human toll signaling pathway: Divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med. 1998;187:2097-101. https://doi.org/10.1084/jem.187.12.2097
  21. Nakamura N, Yoshida M, Umeda M, Huang Y, Kitajima S, Inoue Y, Ishikawa I, Iwai T. Extended exposure of lipopolysaccharide fraction from porphyromonas gingivalis facilitates mononuclear cell adhesion to vascular endothelium via tolllike receptor-2 dependent mechanism. Atherosclerosis. 2008;196:59-67. https://doi.org/10.1016/j.atherosclerosis.2007.01.039
  22. Newman PJ. The biology of PECAM-1. J Clin Invest. 1997;100:S25-9. https://doi.org/10.1172/JCI119517
  23. Park HJ, Jeong SK, Kim SR, Bae SK, Kim WS, Jin SD, Koo TH, Jang HO, Yun I, Kim KW, Bae MK. Resveratrol inhibits porphyromonas gingivalis lipopolysaccharide-induced endothelial adhesion molecule expression by suppressing NF-kappaB activation. Arch Pharm Res. 2009;32:583-91. https://doi.org/10.1007/s12272-009-1415-7
  24. Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M. Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell. 2007;18:5014-23. https://doi.org/10.1091/mbc.E07-01-0004
  25. Reutershan J, Morris MA, Burcin TL, Smith DF, Chang D, Saprito MS, Ley K. Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J Clin Invest. 2006;116:695-702. https://doi.org/10.1172/JCI27009
  26. Slots J, Ting M. Actinobacillus actinomycetemcomitans and porphyromonas gingivalis in human periodontal disease: Occurrence and treatment. Periodontol 2000. 1999;20:82-121. https://doi.org/10.1111/j.1600-0757.1999.tb00159.x
  27. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol. 2000;279:L419-22. https://doi.org/10.1152/ajplung.2000.279.3.L419
  28. van der Wal AC, Becker AE. Atherosclerotic plaque rupture--pathologic basis of plaque stability and instability. Cardiovasc Res. 1999;41:334-44. https://doi.org/10.1016/S0008-6363(98)00276-4
  29. Wang PL, Ohura K. Porphyromonas gingivalis lipopoly-saccharide signaling in gingival fibroblasts-CD14 and toll-like receptors. Crit Rev Oral Biol Med. 2002;13:132-42. https://doi.org/10.1177/154411130201300204
  30. Weis SM. Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol. 2008;15:243-9. https://doi.org/10.1097/MOH.0b013e3282f97d86
  31. Weis SM. Chapter 5. evaluating vascular leak in vivo. Methods Enzymol. 2008;444:99-114.
  32. Yun PL, Decarlo AA, Chapple CC, Hunter N. Functional implication of the hydrolysis of platelet endothelial cell adhesion molecule 1 (CD31) by gingipains of porphyromonas gingivalis for the pathology of periodontal disease. Infect Immun. 2005;73:1386-98. https://doi.org/10.1128/IAI.73.3.1386-1398.2005
  33. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell. 1997;91:243-52. https://doi.org/10.1016/S0092-8674(00)80406-7