DOI QR코드

DOI QR Code

Construction of Fuzzy Logic Based on Knowledge for Greenery Warranty Systems

그린 보증시스템을 위한 지식기반 퍼지로직 구축

  • Lee, Sang-Hyun (Dept. of Computer Engineering, Mokpo National University) ;
  • Lee, Sang-Joon (School of Business Administration, Chonnam National University) ;
  • Moon, Kyeong-Il (Dept. of Computer Engineering, Honam University)
  • 이상현 (목포대학교 컴퓨터공학과) ;
  • 이상준 (전남대학교 경영학부) ;
  • 문경일 (호남대학교 컴퓨터공학과)
  • Received : 2010.10.06
  • Accepted : 2010.11.27
  • Published : 2011.03.31

Abstract

Green IT, composed term with Green and Information Technology(IT), use IT for energy savings and carbon emission reductions. Green IT went beyond the scope of greening IT, and recently it's concept is expanded as far as counterplan of climate change including greening other industries by IT. 85% of total greenhouse gas emissions from the energy sector and 20% of them comes from transport parts, so it is time to research IT for automotive industry. In this paper, we take up the knowledge based fuzzy logic to provide life cycle analysis associated with greenhouse gas emissions for industry produced warranty claims frequently such as automobile industry. We propose a analysis method of warranty claims using expert knowledge about the warranty in car exhaust systems related to greenhouse gas emissions, past test results of malfunction, analysis of past field data, and warranty data. Furthermore, we propose life knowledge-based GWS (Greenery Warranty System). We demonstrate the applicability of IT in eco-friendly automotive industry by implementing knowledge-based fuzzy logic and applying.

환경을 의미하는 녹색(Green)과 정보기술(IT)을 합성한 용어인 그린 IT는 에너지 절감과 탄소배출 감축을 목표로 IT 기술을 활용하고 있다. 그린 IT는 IT산업을 친환경화 하기 위한 범위를 벗어나서, 최근에는 IT를 활용한 타 산업분야의 그린화를 포함하여 기후변화 대응 방안으로까지 개념이 확장되고 있다. 전체 온실가스 배출량의 85%를 에너지 부문이 차지하고 있으며, 그 중에서도 수송부분이 20%를 차지하고 있는 만큼 자동차 산업 분야를 위한 IT의 연구가 필요한 시점이다. 본 논문에서는 자동차와 같이 보증 클레임이 빈번하게 발생되는 산업 분야의 온실가스 배출과 관련된 수명주기 분석을 제공하기 위하여 지식 기반 퍼지 로직을 이용한다. 온실가스 배출 관련 자동차 배기 시스템에 대한 보증 전문가 지식, 과거 오작동 테스트 결과, 과거 현장 분석 및 보증 데이터를 이용한 보증 클레임 분석 방법을 제안하였다. 또한, 수명 지식 기반의 GWS(Greenery Warranty System)를 제안하였다. 지식기반 퍼지 로직을 직접 구현하여, 실무에 적용함으로써 친환경 자동차 산업에 IT의 적용성을 증명하였다.

Keywords

References

  1. Samsung Global Environment Research Center, "Climate Change Changes Business," 2008.
  2. Kim, S H, "Green IT Economics," Yulgokbook Publishing Co., 2009.
  3. Shin, J H, "Technical Trend of Green IT," Communication of the KIISE, Vol. 27, No. 11, pp. 30-41, 2009.
  4. U.S. Department of energy, "Proposed New Standards to Increase Fuel Economy by 25% by 2015,"http: / / apps1.eere.energy.gov/ news/ news_detail.cfm/news_id=11741.
  5. California Air Resources Board, "Emission Control System Warranty Requirements," http://o3.arb.ca.gov/regact/obdii06/warrantyregclean.pdf
  6. Murthy D. N. P. and Blischke W.R., "Warranty and reliability," in Balakrishnan, N. and Rao, C.R. (Eds), Handbook of Statistics: Advances in Reliability, Elsevier Science, Amsterdam, Vol. 20, pp. 541-583, 2001.
  7. Murthy D. N. P., DjamaludinI. "New product warranty: a literature review," Int. J. Prod. Econ. Vol. 79, pp. 231-260, 2002. https://doi.org/10.1016/S0925-5273(02)00153-6
  8. Chukova S. and Hayakawa Y., "Warranty cost analysis: Non-renewing warranty with repair time," Applied Stochastic Models in Business and Industry Vol. 20 No. 1, pp. 59-71, 2004. https://doi.org/10.1002/asmb.515
  9. Hu J. X and Lawless J. F and Suzuki K., "Nonparametric estimation of a lifetime distribution when censoring times are missing," Technometrics, Vol. 40, pp. 3-13, 1998. https://doi.org/10.1080/00401706.1998.10485477
  10. Lawless J. F and Kalbfleisch J. D., "Statistical Analysis of Warranty Claims Data," in Product Warranty Handbook, W.R. Blischke and D.N.P. Murthy, eds., New York: Marcel Dekker Inc., pp. 231-259, 1995.
  11. Karim M. R and Yamamoto Wand Suzuki K., "Change-point Detection from Marginal Count Failure Data," Journal of the Japanese Society for Quality Control, Vol. 31, pp. 318-338, 2001.
  12. Karim M. R and Suzuki K., "Analysis of Warranty Claim Data: A Literature Review," International Journal of Quality & Reliability Management, Vol. 22, No. 7, pp. 667-686, 2005. https://doi.org/10.1108/02656710510610820
  13. Crowder M. and Stephens D., "On the analysis of quasi-life tables", LIFETIME DATA ANAL, Vol. 9, pp. 345-355, 2003. https://doi.org/10.1023/B:LIDA.0000012421.30240.62
  14. Liao S. H., "Knowledge Management Technologies and Applications-Literature Review from 1995 to 2002", Expert Systems with Applications, Vol. 25, pp. 155-164, 2003. https://doi.org/10.1016/S0957-4174(03)00043-5
  15. Singh, B., Garg S.K. and Sharma, S.K. ,"Development of index for measuring leanness: study of an Indian auto component industry", Measuring Business Excellence, Vol. 14 Iss: 2, pp.46 - 53, 2010. https://doi.org/10.1108/13683041011047858
  16. Lee S. H and Lee S. J and Moon K. I., "A Fuzzy Logic-based Approach to Two-dimensional Automobile Warranty System, Journal of Circuits, Systems, and Computers, Vol. 19, No. 1, pp. 139-154, 2010. https://doi.org/10.1142/S0218126610005974
  17. Yadav O. P and Singh N., Chinnam R. B and Goel P. S., "A Fuzzy Logic Based Approach to Reliability Improvement Estimation During Product Development," Reliability Engineering and System Safety, Vol. 80, pp. 63-74, 2003. https://doi.org/10.1016/S0951-8320(02)00268-5
  18. Bowles J. B. and Pelaez C. E., "Application of Fuzzy Logic to Reliability Engineering," IEEE Proceedings, Vol. 83, pp. 435-449, 1995. https://doi.org/10.1109/5.364489

Cited by

  1. 그린IT 장기지속성에 관한 연구 vol.19, pp.2, 2011, https://doi.org/10.9708/jksci.2014.19.2.221