DOI QR코드

DOI QR Code

Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods

LPC와 DTW 기법을 이용한 유도전동기의 고장검출 및 진단

  • Hwang, Chul-Hee (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Yong-Min (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Cheol-Hong (Dept. of Electronics and Computer Eng., Chonnam National University) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • 황철희 (울산대학교 전기공학부) ;
  • 김용민 (울산대학교 전기공학부) ;
  • 김철홍 (전남대학교 전자컴퓨터공학과) ;
  • 김종면 (울산대학교 전기공학부)
  • Received : 2010.11.18
  • Accepted : 2010.12.01
  • Published : 2011.03.31

Abstract

This paper proposes an efficient two-stage fault prediction algorithm for fault detection and diagnosis of induction motors. In the first phase, we use a linear predictive coding (LPC) method to extract fault patterns. In the second phase, we use a dynamic time warping (DTW) method to match fault patterns. Experiment results using eight vibration data, which were collected from an induction motor of normal fault states with sampling frequency of 8 kHz and sampling time of 2.2 second, showed that our proposed fault prediction algorithm provides about 45% better accuracy than a conventional fault diagnosis algorithm. In addition, we implemented and tested the proposed fault prediction algorithm on a testbed system including TI's TMS320F2812 DSP that we developed.

본 논문은 유도전동기의 고장검출 및 진단을 위한 효율적인 2-단계 고장예측 알고리즘을 제안한다. 첫 번째 단계에서는 고장 패턴 추출을 위해 선형 예측 부호화 (Linear Predictive Coding: LPC) 기법을 사용하고, 두 번째 단계에서는 고장 패턴 매칭을 위해 동적시간교정법 (Dynamic Time Warping: DTW)을 사용한다. 유도전동기에서 정상 및 각종 이상 상태의 조건을 발생시켜 추출한 샘플링 주파수 8kHz, 샘플링 시간 2.2초의 정상상태 및 비정상 상태의 진동데이터 8개를 사용하여 모의 실험한 결과, 제안한 고장예측 알고리즘은 기존의 고장진단 알고리즘보다 약 45%의 정확도 향상을 보였다. 또한 TI사의 TMS320F2812 DSP를 내장한 테스트베드 시스템을 제작하여 제안한 고장예측 알고리즘을 구현하고 검증하였다.

Keywords

References

  1. Sung-Suk Kim, Dae-Jeong Lee, Jang-Hwan Park, Jeong-Woong Ryu, Myung-Geun Chun "Detection and diagnosis of induction motor using conditional FCM and radial basis function network", Journal of Korean Institute of Intelligent Systems, Vol. 14, No. 7, pp.878-882, 2004. https://doi.org/10.5391/JKIIS.2004.14.7.878
  2. H. Nejjari, and M. E. H. Benbouzid, "Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach," in IEEE International Conference on Electric Machines and Drives, pp. 275-277, May 1999.
  3. F. Zidani, M. E. H. Benbouzid, D. Diallo, and M. S. Mait-Said, "Induction motor stator faults diagnosis by a current Concordia pattern-based fuzzy decision system," IEEE Transactions on Energy Conversion, Vol. 18, No 4, pp. 469-475, Dec. 2003. https://doi.org/10.1109/TEC.2003.815832
  4. M. Haji and H. A. Toliyat, "Pattern recognition a technique for induction machines rotor broken bar detection," IEEE Trans. on Energy Conversion, Vol. 16, No. 4, pp. 312-317, 2000.
  5. A, M. Trzynadlowski and E. ritchie, "Comparative investigation of diagnostic media for induction motors : a case of rotor cage faults," IEEE Trans. on Industrial Electronics, Vol. 47, No. 5, pp. 1092-1099, 2000. https://doi.org/10.1109/41.873218
  6. Chang-Yoon Lee, Young Hoon Lee, "Study of the Noise Processing to Technique Speech Recognition System", Journal of the Korean Society of Computer and Information, Vol. 7, No. 2, pp. 73-78, 2002.
  7. J. D. Markel and A. H. Gray, Jr., "Linear Prediction of Speech," Springer-Verlag, 1976.
  8. L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978.
  9. P. Delsarte and Y. Genin, "The split Levinson algorithm." IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 34, No. 3, pp. 470-478, June 1986. https://doi.org/10.1109/TASSP.1986.1164830
  10. D. O'Shaughnessy, "Linear predictive coding", Potentials, IEEE, Vol. 7, No. 1, pp. 29-32, 1988. https://doi.org/10.1109/45.1890
  11. J. Makhoul, "Stable and efficient lattice methods for linear prediction," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 26, No. 1, p. 111, Feb. 1978. https://doi.org/10.1109/TASSP.1978.1163046
  12. G. M. White and R.B. Neely, "Speech Recognition Experiments with Linear Prediction, Bandpass Filtering, and Dynamic Programming," IEEE Trans. Acoustics, Speech, Signal Proc., pp. 183-188, 1976.
  13. Sakoe, H. and Chiba, S., "Dynamic programming algorithm optimization for spoken word recognition", IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 26, No. 1, pp. 43-49, 1978 https://doi.org/10.1109/TASSP.1978.1163055
  14. Seok-Woo Jang, Moon-Haeng Huh, Gye-Young Kim, "Effective handwriting verification through DTW and PCA," Journal of the Korea Society of Computer and Information, Vol. 14, No. 7, pp. 25-32, 2009.
  15. Hyungseob Han, Changsu Rho, Sangjin Cho, Kabju Hwang, Uipil Chong, "Fault classification of inductor motor using cross-covariance," KISPS Conference, pp. 168-171, 2009.

Cited by

  1. A Dynamic Time Warping Algorithm Based Analysis of Pedestrian Shockwaves at Bottleneck vol.2018, pp.2042-3195, 2018, https://doi.org/10.1155/2018/1269439
  2. LPC 분석 기법 및 EM 알고리즘 기반 잡음 환경에 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류 vol.19, pp.2, 2014, https://doi.org/10.9708/jksci.2014.19.2.021
  3. 음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출 vol.19, pp.11, 2011, https://doi.org/10.9708/jksci.2014.19.11.017