DOI QR코드

DOI QR Code

Real Time Temperature Distribution Measurement of a Microheater by Using Off-Axis Digital Holography

Off-Axis 디지털홀로그래피를 이용한 마이크로히터의 실시간 온도분포측정

  • Tserendolgor, D. (Division of Mechanical System Engineering, Chonbuk National University) ;
  • Baek, Byung-Joon (Division of Mechanical System Engineering, Chonbuk National University) ;
  • Kim, Dae-Suk (Division of Mechanical System Engineering, Chonbuk National University)
  • 체랭돌가르 (전북대학교, 기계시스템공학부) ;
  • 백병준 (전북대학교, 기계시스템공학부) ;
  • 김대석 (전북대학교, 기계시스템공학부)
  • Received : 2011.02.14
  • Accepted : 2011.03.11
  • Published : 2011.03.30

Abstract

We describe a single shot off-axis digital holography based on a Mach-Zehnder interferometic scheme for measuring temperature distribution of a microheater. The proposed scheme has the capability of reconstructing object phase image which is dependent of the temperature distribution in real time. Experimental results shows that there is a moderate linear relationship between the measured phase and temperature in the range of $20^{\circ}C$ to $60^{\circ}C$. We expect that the proposed system can provide a very reliable and fast solution in various surface temperature distribution measurement applications.

본 논문은 마이크로히터표면의 실시간 온도분표측정을 위한 마하젠더 간섭계 기반의 off-axis 디지털홀로그래피기술에 대한 것이다. 제안된 방법은 재료표면의 온도분포에 직접적인 함수인 2차원 위상 분포를 측정하고, 이를 통해 실시간으로 재료표면의 온도 map을 측정할 수 있다. 본 논문에서는 섭씨 20도에서 60도 사이의 온도구간에서 마이크로히터 표면의 위상변화와 실제표면온도가 선형적인 관계가 있음을 실험적으로 보였다. 제안된 방법은 재료표면의 온도분포를 실시간으로 측정하고자 하는 다양한 응용분야에 적용될 수 있을 것으로 기대된다.

Keywords

References

  1. F. Mayinger and O. Feldmann, Optical Measurements Techniques and Applications in Heat and Mass Transfer (Springer Verlag, Berlin, Heidelberg, 2001), pp. 5-7, 17-37.
  2. I. Kim, E. Oh, Y. S. Kim, S. W. Kim, I. Park, and W. R. Lee, J. Korean Vacuum Soc. 19, 141 (2010). https://doi.org/10.5757/JKVS.2010.19.2.141
  3. M. Goharkhah, M. Ashjaee, and K. Madanipour, J. Exp. Therm. Fluid Sci. 33, 1188 (2009). https://doi.org/10.1016/j.expthermflusci.2009.08.004
  4. D. Naylor, J. Heat Fluid Flow 24, 345 (2003). https://doi.org/10.1016/S0142-727X(03)00021-3
  5. P. A. Walsh and M. R. D. Davies, Exp. Therm. Fluid Sci. 30, 853 (2006). https://doi.org/10.1016/j.expthermflusci.2006.03.015
  6. V. Sajith, D. Haridas, C. B. Sobhan, G. R. C. Reddy, J. Therm. Sci. 30, 1 (2010).
  7. A. Mialdun and V. M. Shevtsova, J. Heat and Mass Transfer 51, 3164 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.020
  8. U. Shnars and W. P. O. Juptner, Digital recording and numerical reconstruction of holograms (Meas. Sci. Technol. Vol. 13, 2002), pp. 85-101.
  9. J. W. Goodman and R. W. Lawrence, J. Appl. Phys. Lett. 11, 77 (1967). https://doi.org/10.1063/1.1755043
  10. D. Gabor, A new microscopic principle (Nature, London, 1948), pp. 161, 777-778.
  11. I. Yamaguchi and T. Zhang, Opt. Lett. 22, 1268 (1997). https://doi.org/10.1364/OL.22.001268
  12. Y. Takaki, H. Kawai, and H. Ohzu, Appl. Opt. 38, 4990 (1999). https://doi.org/10.1364/AO.38.004990
  13. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999). https://doi.org/10.1364/OL.24.000291
  14. R. W. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavkii, Sov. Phys. Tech. 17, 333 (1972).
  15. E. Leith and J. Upatnieks, J. Opt. Soc. Am. 55, 569 (1965). https://doi.org/10.1364/JOSA.55.000569
  16. G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, J. Appl. Phys. B 90, 527 (2008). https://doi.org/10.1007/s00340-007-2910-5
  17. T. Oh, J. Korean Vacuum Soc. 18, 435 (2009). https://doi.org/10.5757/JKVS.2009.18.6.435