DOI QR코드

DOI QR Code

Properties of ZnO:Al Thin Films Deposited by RF Magnetron Sputtering with Various Base Pressure

RF Magnetron Sputtering법으로 제작한 ZnO:Al 박막의 초기 압력에 따른 특성

  • Kim, D.K. (School of Electronics Engineering, Chungbuk National University) ;
  • Kim, H.B. (Division of Electronics and Information Engineering, Cheongju University)
  • 김덕규 (충북대학교 전자공학부) ;
  • 김홍배 (청주대학교 전자정보공학부)
  • Received : 2010.11.16
  • Accepted : 2011.03.03
  • Published : 2011.03.30

Abstract

ZnO:Al thin films were deposited by RF magnetron sputtering with various base pressure, and their structural, optical, and electrical properties were studied. The influence of the base pressure on the ZnO:Al thin film was confirmed and a high-quality thin film was obtained by controlling the base pressure. In all Al-doped ZnO thin films, the preferred orientation of (002) plane was observed and light transmittance in visible region (400 nm~800 nm) had above 85%. With decreasing of base pressure, crystallinity, resistivity, and figure of merit were improved. The improvement of resistivity with base pressure was attributed to the change of grain size.

ZnO:Al 박막을 RF magnetron sputtering 법을 이용하여 초기 압력에 따라 증착하고 박막의 구조적, 광학적, 전기적 특성을 연구하였다. 초기 압력 변화에 의해 ZnO:Al 박막의 특성의 변화를 확인하였고 고품질의 박막을 얻을 수 있었다. 모든 ZnO:Al 박막에서 (002)면의 우선 배향성을 보였으며 가시광선 영역(400~800 nm)에서 85% 이상의 좋은 투과도를 보였다. 초기 압력이 낮아질수록 결정성, 비저항 그리고 성능지수 특성이 향상됨을 확인하였다. 초기 압력에 따른 비저항의 향상은 결정립 크기 변화에 의한 것으로 판단된다.

Keywords

References

  1. K. Tonooka, H. Bando, and Y. Aiura, Thin Solid Films 445, 327 (2003). https://doi.org/10.1016/S0040-6090(03)01177-5
  2. G. K. R. Senadeera, K. Nakamura, and T. Kitamura, Appl. Phys. Lett. 83, 5470 (2003). https://doi.org/10.1063/1.1633673
  3. S. H. Cho, J. Korean Vacuum Soc. 18, 377 (2009). https://doi.org/10.5757/JKVS.2009.18.5.377
  4. J. S. Lee, G. C. Kim, H. H. Jeon, S. J. Hwangboe, D. H. Kim, C. M. Seong, and M. H. Jeon, J. Korean Vacuum Soc. 17, 23 (2008). https://doi.org/10.5757/JKVS.2008.17.1.023
  5. M. Lorenz, E. M. Kaidashev, H. von Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H. C. Semmelhack, and M. Grundmann, Solid-State Electron. 47, 2205 (2003). https://doi.org/10.1016/S0038-1101(03)00198-9
  6. A. Maldonado, S. T. Guerra, M. M. Lira, and M. L. Olvera, Sol. Energ. Mat. Sol. C. 90, 742 (2006). https://doi.org/10.1016/j.solmat.2005.04.011
  7. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301
  8. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, J. Phys. D: Appl. Phys. 33, R17 (2000). https://doi.org/10.1088/0022-3727/33/4/201
  9. S. H. Jeong and J. H. Boo, Thin Solid Films 447, 105 (2004). https://doi.org/10.1016/j.tsf.2003.09.031
  10. R. J. Honga, X. Jianga, G. Heideb, B. Szyszkaa, V. Sittingera, and W. Werner, 249, 461 (2003). https://doi.org/10.1016/S0022-0248(02)02270-4
  11. J. Mass, P. Bhattacharya, and R. S. Katiyar, Mater. Sci. Eng. B 103, 9 (2003). https://doi.org/10.1016/S0921-5107(03)00127-2
  12. H. P. Chang, F. H. Wang, J. Y. Wu, C. Y. Kung, and H. W. Liu, Thin Solid Films 518, 7445 (2010). https://doi.org/10.1016/j.tsf.2010.05.020
  13. W. Yang, Z. Liu a, D. L. Peng, F. Zhang, H. Huang, Y. Xie, and Z. Wua, Appl. Surf. Sci. 255, 5669 (2009). https://doi.org/10.1016/j.apsusc.2008.12.021
  14. Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang, Mater. Chem. Phys. 72, 269 (2001). https://doi.org/10.1016/S0254-0584(01)00450-3
  15. B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, 1978), 102.
  16. Y. Igasaki and H. Kanma, Appl. Surf. Sci. 169-170, 508 (2001). https://doi.org/10.1016/S0169-4332(00)00748-0
  17. H. A. Mohamed, J. Phys. D: Appl. Phys. 40, 4234 (2007). https://doi.org/10.1088/0022-3727/40/14/019

Cited by

  1. Optical and Electrical Properties of Sputtered ZnO:Al Thin Films with Various Annealing Temperature vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.20