DOI QR코드

DOI QR Code

Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization

전도성 향상을 위한 구리호일 위 CNT의 직접성장 및 전계방출 특성 평가

  • Kim, J.J. (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Lim, S.T. (Department of Nuclear Engineering, Seoul National University) ;
  • Kim, G.H. (Department of Nuclear Engineering, Seoul National University) ;
  • Jeong, G.H. (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • 김진주 (강원대학교 신소재공학과) ;
  • 임선택 (서울대학교 원자핵공학과) ;
  • 김곤호 (서울대학교 원자핵공학과) ;
  • 정구환 (강원대학교 신소재공학과)
  • Received : 2011.01.11
  • Accepted : 2011.03.16
  • Published : 2011.03.30

Abstract

Carbon nanotubes (CNT) have been attracted much attention since they have been expected to be used in various areas by virtue of their outstanding physical, electrical, and chemical properties. In order to make full use of their prominent electric conductivity in some areas such as electron emission sources, device interconnects, and electrodes in energy storage devices, direct growth of CNT with vertical alignment is definitely beneficial issue because they can maintain mechanical stability and high conductivity at the interface between substrates. Here, we report direct growth of vertically aligned CNT (VCNT) on Cu foils using thermal chemical vapor deposition and characterize the field emission property of the VCNT. The VCNT's height was controlled by changing the growth temperature, growth time, and catalytic layer thickness. Optimum growth condition was found to be $800^{\circ}C$ for 20 min with acetylene and hydrogen mixtures on Fe catalytic layer of 1 nm thick. The diameter of VCNT grown was smaller than that of usual multi walled CNT. Based on the result of field emission characterization, we concluded that the VCNT on Cu foils can be useful in various potential applications where high conductivity through the interface between CNT and substrate is required.

탄소나노튜브(CNT)와 합성기판 사이의 전도성 향상을 목적으로, 현재 리튬이온이차전지 등의 분야에서 전극으로 이용되고 있는 구리 호일을 합성기판으로 하여, 그 위에 수직배향 CNT 성장의 합성 최적화를 도모하였다. 합성은 수평식 CVD 합성장비를 이용하였으며, 최적의 합성조건은 구리호일 위에 10 nm의 Al2O3 버퍼층과 1 nm 두께의 Fe 촉매층을 증착한 후, 아세틸렌 가스를 이용하여 $800^{\circ}C$에서 20분간 합성한 조건으로 설정하였다. CNT는 base-growth의 성장형태를 따랐고, Fe 1 nm 두께인 경우, $7.2{\pm}1.5nm$의 촉매나노입자가 형성되었으며, 이를 이용하여 $800^{\circ}C$에서 20분 성장결과, 직경 8.2 nm, 길이 $325{\mu}m$의 수직배향 CNT를 얻을 수 있었다. 합성시간이 길어져도 CNT의 결정성, 직경 및 겹(wall) 수에는 큰 변화가 없었다. 끝으로, 구리호일 위에 수직 성장시킨 CNT의 전계방출 특성을 측정한 결과, 실리콘 산화막 위에 성장시킨 CNT와 비교하여, 월등히 낮은 전계방출 문턱전압과 10배 정도 높은 전계향상계수를 보였다. 이는 CNT와 금속기판 사이의 계면에서 전기전도도가 향상된 결과에 기인하는 것으로 사료된다.

Keywords

References

  1. P. M. Ajayan, Chem. Rev. 99, 1787 (1999). https://doi.org/10.1021/cr970102g
  2. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Science 363, 605 (1993).
  3. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996). https://doi.org/10.1126/science.273.5274.483
  4. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274, 1701 (1996). https://doi.org/10.1126/science.274.5293.1701
  5. D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, Appl. Phys. Lett. 83, 1851 (2003). https://doi.org/10.1063/1.1605793
  6. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998). https://doi.org/10.1126/science.282.5391.1105
  7. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999). https://doi.org/10.1126/science.283.5401.512
  8. J. Park, S. Kyung, and G. Yeom, J. Korean Vacuum Soc. 15, 374 (2006).
  9. S. I. Jung, S. K. Choi, and S. B. Lee, J. Korean Vacuum Soc. 17, 365 (2008). https://doi.org/10.5757/JKVS.2008.17.4.365
  10. S. W. Lee, S. H Moon, H. S. Yoon, X. Wang, D. W. Kim, I. S. Yeo, U. I. Chung, J. T. Moon, and J. G. Chung, Appl. Phys. Lett. 91, 263101 (2007). https://doi.org/10.1063/1.2824390
  11. W. Li, X. Wang, Z. Chen, M. Waje, and Y. Yan, J. Phys. Chem. B 110, 15353 (2006). https://doi.org/10.1021/jp0623443
  12. C. Masarapu and B. Wei, Langmuir 26, 9046 (2007).
  13. W. Yi and Q. Yang, Diam. Relat. Mater. 19, 870 (2010). https://doi.org/10.1016/j.diamond.2010.02.009
  14. L. Gao, A. Peng, Z. Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, and B. Ding, Solid State Commun. 146, 380 (2008). https://doi.org/10.1016/j.ssc.2008.03.034
  15. T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, J. Am. Chem. Soc. 128, 13338 (2006). https://doi.org/10.1021/ja0643772
  16. G. D. Nessim, M. Seita, K. P. O'Brien, A. J. Hart, R. K. Bonaparte, R. R. Mitchell, and C. V. Thompson, Nano Lett. 9, 3398 (2009). https://doi.org/10.1021/nl900675d
  17. H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno, and Y. Homma, Nano Lett. 8, 2082 (2008). https://doi.org/10.1021/nl080452q
  18. C. T. Wirth, C. Zhang, G. Zhong, S. Hofmann, and Robertson, ACS Nano 3, 11 (2009).
  19. G. -H. Jeong, N. Olofsson, L. Falk, and E. E. B. Campbell, Carbon 47, 696 (2009). https://doi.org/10.1016/j.carbon.2008.11.003
  20. S. H. Jo, D. Z. Wang, J. Y. Huang, W. Z. Li, K. Kempa, and Z. F. Ren, Appl. Phys. Lett. 85, 810 (2004). https://doi.org/10.1063/1.1776330
  21. D. Q. Duy, H. S. Kim, D. M. Yoon, K. J. Lee, J. W. Ha, Y. G. Hwang, C. H. Lee, and B. T. Cong, Appl. Sur. Sci. 256, 1065 (2009). https://doi.org/10.1016/j.apsusc.2009.05.106
  22. W. Yi and Q. Yang, Diamond. Relat. Mat. 19, 870 (2010). https://doi.org/10.1016/j.diamond.2010.02.009
  23. S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, and P. M. Ajayan, Nat. Nanotechnol. 1, 112 (2006). https://doi.org/10.1038/nnano.2006.56