Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1

초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계

  • Kim, Se-Jin (Department of Visual Optics, Baekseok University) ;
  • Ko, Jung-Hui (Samsung Electronics, Digital Imaging Division) ;
  • Lim, Hyeon-Seon (Department of Ophthalmic Optics, Gangdong University)
  • 김세진 (백석대학교 보건학부 안경광학과) ;
  • 고정휘 (삼성전자 디지털이미징사업부) ;
  • 임현선 (강동대학교 안경광학과)
  • Received : 2011.11.18
  • Accepted : 2011.12.17
  • Published : 2011.12.31

Abstract

Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.

목적: 초점거리의 비가 3:1인 아나모픽 렌즈를 적용하여 탐지거리를 증대시키는 열상 광학계를 설계하였다. 방법: 화각이 $50^{\circ}{\sim}60^{\circ}$, 초점거리는 수평방향 36 mm, 수직방향 12 mm로 구속조건을 정하였다. 구속조건으로 f-number는 4, 화소 크기는 $15{\mu}m{\times}15{\mu}m$, 한계 분해능은 33l p/mm에서 25% 이상으로 제한하였다. 재질은 Si, ZnS, ZnSe를 사용하였으며 파장영역은 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$로 설정하였다. 설계한 열상 카메라의 광학적 성능 및 탐지거리와 나르시서스, 비열화를 분석하였다. 결과: 열상 광학계의 초점거리는 Y축 방향이 12 mm, X축 방향이 36 mm를 만족하였으며 f-number는 4를 만족하였다. 전장의 길이는 76 mm로 시스템의 전반적인 부피를 감소시켰다. 구면수차와 비점수차는 ${\pm}$0.10내로 2 pixel 크기보다 작게 나타났다. 왜곡수차는 10%이내로써 열상 카메라로 사용하는데 문제가 없음을 확인하였다. 광학계 MTF 성능은 33l p/mm에서 full field 까지 25%이상으로 구속조건을 만족하였다. 설계된 열상 광학계는 2.9 km까지 탐지할 수 있으며 4면을 제외한 나머지 면들의 나르시서스 값을 줄여 상 번짐이 감소하였다. 민감도 분석을 통해 5번째 렌즈를 보상자로 선택하여 온도 변화에 따른 MTF 해상력을 높였다. 결론: 아나모픽 렌즈를 적용해서 설계한 열상 광학계의 광학적 성능은 구속조건을 만족하였으며 더 긴 탐지거리와 나르시서스의 감소, 온도에 따른 해상력이 증가됨을 확인하였다.

Keywords

References

  1. Scaglione B. J., "Digital Security Technology Simplified", J. Healthc. Prot. Manage, 23(2)51-60(2007).
  2. Lloyd, J. M., "Thermal Imaging System", Plenum Press, pp.275-281(1975).
  3. Yuan Sheng, and Sasian Jose, "Aberrations of anamorphic optical systems. I: the first-order foundation and method for deriving the anamorphic primary aberration coefficients", Applied Optics, 48(13):2574-2584(2009). https://doi.org/10.1364/AO.48.002574
  4. 김세진, 고정휘, 임현선, "난시교정용 Anamorphic Lens", 2011 한국안광학회 하계학술대회 논문집, 38-39(2011).
  5. Powell Ian, "Variable Anamorphic Lens for a 35-mm SLR", Applied Optics, 22(20):3249-3257(1983). https://doi.org/10.1364/AO.22.003249
  6. Code V Reference Manual Vol. 2, Optical Research Associates.
  7. David L. Shumaker, James T. Wood, and Clinton R. Thacker, "FLIR Performance Handbook", DCS Corp., Ch.6(1988).
  8. Howard J. W. and Abel I. R., "Narcissus: Reflections on Retroreflections in Thermal Imaging Systems", Applied Optics, 21(18):3393-3397(1982). https://doi.org/10.1364/AO.21.003393
  9. Freeman D. E. L., "Guidelines for Narcissus Reduction and Modeling", Proc. SPIE, 892:27-37(1988).
  10. Dobson S. J., Cox A., and Lu K., "Calculation and optimization of Narcissus using paraxial ray tracing", Applied Optics, 35(16):3059-3064(1996). https://doi.org/10.1364/AO.35.003059
  11. Lu K. and Dobson S. J., "Accurate calculation of Narcissus signatures by using finite ray tracing", Applied Optics, 36(25):6393-6398(1997). https://doi.org/10.1364/AO.36.006393
  12. Arnold Daniels, "Field Guide to Infrared Systems", 2nd ed., SPIE Press, Bellingham, pp.11(2010).
  13. 고정휘, "Anamorpic Lens를 적용한 열상 카메라 광학계 설계", 국민대학교 이학박사학위논문, 65-72(2011).