DOI QR코드

DOI QR Code

Hydrogen Permeation of SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β Proton-Conducting Ceramic Membranes

프로톤 전도성 SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β 복합체 멤브레인의 수소투과 특성

  • Received : 2011.03.31
  • Accepted : 2011.04.22
  • Published : 2011.04.30

Abstract

Proton conductors have attracted considerable attention for solid oxide fuel cell (SOFC), hydrogen pump, gas sensor, and membrane separators. Doped $SrCeO_3$ exhibits appreciable proton conductivity in hydrogen-containing atmosphere at high temperature. However commercial realization has been hampered due to the reactivity of $SrCeO_3$ with $CO_2$. The chemical stability and proton conductivity are dependent on dopant type. The purpose of this work is to investigate chemical stability of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composites in $CO_2$ and $H_2$ gases. Thermogravimetric analysis (TGA) was performed in gaseous $CO_2$ and electrical conductivity of the composites were also measured between 500 and $900^{\circ}C$ in air and $H_2$ atmosphere. $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes showed good chemical stability of in $CO_2$ atmosphere and high conductivity at hydrogen condition. The hydrogen permeation of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes was investigated as a function of volumetric content of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}$. The $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$(6:4) membrane with a thickness of 1.0 mm showed the highest hydrogen permeability with the flux reaching of 0.12 $ml/min{\cdot}cm^2$ at $800^{\circ}C$ in 100%$H_2/N_2$ as feed gas.

Keywords

References

  1. H. Matsumoto, S. Hamajima, T. Yajima, H. Iwahara, "Electrochemical hydrogen pump using $SrCeO_{3}$-based proton conductor: effect of water vapor at the cathode on the pumping capacity", J. Electrochem. Soc., Vol. 148, 2001, pp. D121-D124. https://doi.org/10.1149/1.1400121
  2. T. Yajima, K. Koide, H. Takai, N. Fukatsu, H. Iwahara, "Application of hydrogen sensor using proton conductive ceramics as a solid electrolyte to aluminum casting industries", Solide State Ionics, Vol. 79, 1995, pp. 333-337. https://doi.org/10.1016/0167-2738(95)00083-I
  3. N. Fukatsu, N. Kurita, K. Koide, T. Ohashi, "Hydrogen sensor for molten metals usable up to 1500K", Solid State Ionic, Vol. 113-115, 1988, pp. 219-227.
  4. T. Schober, "Application of oxidic high-temperature proton conductors", Solid State Ionic, Vol. 163-163, 2003, pp. 277-281.
  5. N. Taniguchi, E. Yasumoto, T. Gamo, "Operating properties of solid oxide fuel cells using $BaCe_{0.8}Gd_{0.2}O_{3-\alpha}$ electrolyte", J. Electrochem. Soc., Vol. 143, 1996, pp. 1886-1890. https://doi.org/10.1149/1.1836920
  6. D. Hassan, S. Janes, R. Clasen, "Proton-conducting ceramics as electrode/electrolyte materials for SOFC. Part I. Preparation, mechanical and thermal properties of sintered bodies", J. Eur. Ceramic. Soc., Vol. 23, 2003, pp. 221-228. https://doi.org/10.1016/S0955-2219(02)00173-5
  7. T. Shimada, C. Wen, N. Taniguchi, J. Otomo, H. Takahashi, "The high temperature proton conductor $BaZr_{0.4}Ce_{0.4}In_{0.2}O_{3-\alpha}$", J. Power Sources, Vol. 131, 2004, pp. 289-292. https://doi.org/10.1016/j.jpowsour.2003.11.087
  8. T.E.H. Iwahara, H. Uchida, N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production", Solid State Ionics, Vol. 3-4, 1981, pp. 359-363. https://doi.org/10.1016/0167-2738(81)90113-2
  9. T. Higuchi, T. Tsukamoto, N. Sate, T. Hattori, S. Yamaguchi, S. Shin, "Electronic structure of protonic conductor $SrCeO_{3}$ by soft-X-ray spectroscopy", Solid State Ionics, Vol. 175, 2004, pp. 549-552. https://doi.org/10.1016/j.ssi.2004.03.041
  10. J. Guan, S.E. Dorris, U Balachandran, M. Liu, "Transport properties of $BaCe_{0.95}Y_{0.05}O_{3-d}$ mixed conductors for hydrogen separation", Solid State Ionics, Vol. 100, 1997, pp. 45-52. https://doi.org/10.1016/S0167-2738(97)00320-2
  11. G.L. Ma, T. Shimura, H. Iwahara, "Ionic conduction and nonstoichiometry in $Ba_{x}Ce_{0.9}Y_{0.10}O_{3-d}$", Solid State Ionics, Vol. 110, 1998, pp. 103-110. https://doi.org/10.1016/S0167-2738(98)00130-1
  12. M.J. Scholten, J. Schoonman, J.C. van Miltenburg, H.A.J. Oonk, "Synthesis of strontium and barium cerate and their reaction with carbon dioixde", Solid State Ionics, Vol. 61, 1993, pp. 83-91. https://doi.org/10.1016/0167-2738(93)90338-4
  13. S. Gopalan, A.V. Virkar, "Thermodynamic stability of $SrCeO_{3}$ and $BaCeO_{3}$ using a molten salt method and galvanic cells", J. Electrochem. Soc., Vol. 140, 1993, pp. 1060-1065. https://doi.org/10.1149/1.2056197
  14. N. Bonanos, K.S. Knight, B. Ellis, "Perovskite solid electrolytes: structure, transport properties and fuel cell applications", Solid State Ionics, Vol. 79, 1995, pp. 161-170. https://doi.org/10.1016/0167-2738(95)00056-C
  15. C.W. Tanner, A.V. Virkar, "Instability of $BaCeO_{3}$ in $H_{2}O$-containing atmosphere", J. Electrochem. Soc., Vol. 143, 1996, pp. 1386-1389. https://doi.org/10.1149/1.1836647
  16. Kwang Hyun Ryu, Sossina M. Haile, "Chemical stability and proton conductivity of doped $BaCeO_{3}-BaZrO_{3}$", Solid State Ionics, Vol. 125, 1999, pp. 355-367. https://doi.org/10.1016/S0167-2738(99)00196-4
  17. Koji Katahira, Yoshirou Kohchi, Tetsuo Shimura, Hiroyasu Iwahara, "Protonic conduction in substituted $BaCeO_{3}$", Solid State Ionics Vol. 138, 2000, pp. 91-98. https://doi.org/10.1016/S0167-2738(00)00777-3
  18. K. D. Kreuer, "Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides", Solid State Ionics, Vol. 273-285, 1999, p. 125.
  19. Sachio OKADA, Atsushi Mineshige, Masafumi Kobune, Tetsuo Yazawa, "Conducting properties of $SrCeO_{3}$ system doped with various rare earth metals", Vol. 112, 2004, pp. S700-S702.
  20. Yingchun Zhang, Qingjun Zhou, Tianmin He, "$La_{0.7}Ca_{0.3}CeO_{3}-Ce_{0.8}Gd_{0.2}O_{1.9}$ composites as symmetrical electrodes for solid-oxide fuel cells", Journal of Power Sorces, Vol. 196, 2011, pp. 76-83. https://doi.org/10.1016/j.jpowsour.2010.07.035
  21. P. J. Gellings, H. J. M. Bouwmeester, "Solid state electrochemistry", CRS, Netherland, 1997, pp. 497-498.
  22. Y. Liu, X Tan, K. Li, "Mixed conducting ceramics for catalytic membrane processing", Catalysis Reviews, Vol. 48, 2006, pp. 145-198. https://doi.org/10.1080/01614940600631348
  23. 변명섭, 강은태, 조우석, 김진호, 황광택, "$BaCeO_{3}$계 프로톤 전도 산화물의 화학적 불안정성", 한국수소 및 신에너지학회 논문집, Vol. 22, No. 2, 2011, pp. 92-99.