DOI QR코드

DOI QR Code

고체산화물 연료전지 박막의 전기적 특성 연구

The Electrical Properties of Sputtered GDC Thim Film for Solid Oxide Fuel Cells

  • 이기성 (홍익대학교 재료공학부) ;
  • 이재문 (홍익대학교 재료공학부) ;
  • 심수만 (홍익대학교 재료공학부) ;
  • 김동민 (홍익대학교 재료공학부)
  • Lee, Ki-Seong (Department of Materials Science and Engineering, Hongik University) ;
  • Lee, Jai-Moon (Department of Materials Science and Engineering, Hongik University) ;
  • Shim, Su-Man (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Dong-Min (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2011.03.31
  • 심사 : 2011.06.20
  • 발행 : 2011.06.30

초록

The electrical properties of sputtered GDC thin films on $Al_2O_3$ substrates was studied. The electrical properties of the films were measured to evaluate the ion conductivity of GDC thin films for co-planar SOFC electrolytes. The impedance of the GDC thin films on $Al_2O_3$ substrates was affected by the film thickness and the impedance of thin film exhibited higher value than thick films. Similarly, the conductivity of the thick film showed much higher value than thin films. It indicated that the film thickness is the main factor affecting the conductivity and impedance of the GDC electrolyte for the co-planar SOFC.

키워드

참고문헌

  1. Song C., Zhang L., Zhang J., Wilkinson D.P., Baker R., "Temperature dependence of oxygen reduction catalyzed by cobalt fluoro phthalocya nine adsorbed on a graphite electrode", Fuel Cells, Vol. 7, 2007, pp. 9-15. https://doi.org/10.1002/fuce.200500205
  2. Hibino T., Hashimoto A., Inoue T., Tokuno J., Yoshida S., Sano M., "A low operating temperature solid oxide fuel cell in hydrocarbon air mixtures", Science, Vol. 288, 2000, pp. 2031- 2033. https://doi.org/10.1126/science.288.5473.2031
  3. Shao Z.P., Haile S.M., "A high-performance cathode for the next generation of solid-oxide fuel cells", Nature, Vol. 431, 2004, p. 170. https://doi.org/10.1038/nature02863
  4. Shao Z.P., Haile S.M, Ahn J., Ronney P.D., Zhan Z., Barnett S.A., "A thermally self sustained micro solid-oxide fuel-cell stack with high power density", Nature, Vol. 435. 2005, pp. 795-798. https://doi.org/10.1038/nature03673
  5. Trovarelli A., "Catalytic Properties of Ceria and CeO2-Containing Materials", Catal. Rev. Sci. Eng., Vol. 38, issue 4, 1996, p. 439. https://doi.org/10.1080/01614949608006464
  6. Taniguchi I., van Landschoot R.C., Schoonman J., "Electrostatic Spray Deposition of Gd0.1Ce0.9O1.95 and La0.9Sr0.1Ga0.8Mg0.2O2.87 Thin Films", Solid State Ionics, Vol. 160, 2003, p. 271. https://doi.org/10.1016/S0167-2738(03)00149-8
  7. Mogensen M., Sammes N.M., Tompsett G.A., "Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria", Solid State Ionics, Vol. 129, 2000, pp. 63-94. https://doi.org/10.1016/S0167-2738(99)00318-5
  8. Singhal S.C., "Advances in solid oxide fuel cell technology", Solid State Ionics, Vol. 135, 2000, pp. 305-313. https://doi.org/10.1016/S0167-2738(00)00452-5
  9. Steel B.C.H., "Appraisal of $Ce_{1-y}GdyO_{2-y/2}$ electrolytes for SOFC operation at $500^{\circ}C$", Solid State Ionics, Vol. 129, 2000, pp. 95-110. https://doi.org/10.1016/S0167-2738(99)00319-7
  10. Kim S.M., Son J.W., Lee K.R., Kim H.C., Kim H.R., Lee H.W., Lee J.H., "Substrate effect on the electrical properties of sputtered YSZ thin films for co-planar SOFC applications", J. Electroceramics, Vol. 24, 2010, pp. 153-160. https://doi.org/10.1007/s10832-008-9550-y
  11. Vert V.B., Serra J.M., "Influence of Barium Incorporation on the Electrochemical Performan ce of $Ln_{0.58}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3}$-delta (Ln=La, Pr, Sm) Perovskites for Oxygen Activation at Intermedi ate Temperatures", Fuel Cells, Vol. 9, 2009, pp. 663-678. https://doi.org/10.1002/fuce.200900017
  12. Turrel H.L., Nowick A.S., "Doped Ceria as a Solid Oxide Electrolyte", J. Electrochem. Soc., Vol. 122, 1975, pp. 255-259. https://doi.org/10.1149/1.2134190
  13. Hibino T., Iwahara H., "Simplification of solid oxide fuel cell system using partial oxidation of methane", Chem. Lett., Vol. 7, 1993, pp. 1131- 1134.
  14. Hibino T., Ushiki K., Sato T., Kuwahara Y., "A novel cell design for simplifying SOFC system", Solid state Ionics, Vol. 81, 1995, pp. 1-3. https://doi.org/10.1016/0167-2738(95)00197-E
  15. Huang K.Q., Tichy R.S., Goodenough J.B., "Superior Perovskite Oxide-Ion Conductor Strontium and Magnesium Doped $LaGaO_{3}$ I Phase Relationships and Electrical Properties", J. Am. Ceram. Soc., Vol. 81, 1998, pp. 2565-2575.
  16. Zhang T.S., Kong L.B., Zeng Z.Q., Huang H.T., Hing P., Xia Z.T., Kilner J.A., "Sintering behavior and ionic conductivity of $Ce_{0.8}Gd_{0.2}O_{1.9}$ with a small amount of $MnO_{2}$ doping", J. Solid State Electrochem., Vol. 7, 2003, pp. 348-354. https://doi.org/10.1007/s10008-002-0337-9
  17. Kosacki I., Suzuki T., Petrovsky V., Anderson H.U., "Electrical conductivity of nanocrystalline ceria and zirconia thin films", Solid State Ionics, Vol. 136, 2000, pp. 1225-1233. https://doi.org/10.1016/S0167-2738(00)00591-9
  18. Kosacki I., Rouleau C., Becher P.F., Bentley J., Lowndes D.H., "Nanoscale effects on the ionic conductivity in highly textured YSZ thin films", Solid State Ionics, Vol. 176, 2005, pp. 1319- 1326. https://doi.org/10.1016/j.ssi.2005.02.021
  19. Karthikeyan A., Chang C.L., Ramanathan S., "High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects", Appl. Phys. Lett, Vol. 89, 2006, article no. 183116.
  20. Fu C.Y., Chang C.L., Hsu C.S., Hwang B.H., "Electrostatic spray deposition of $La_{0.8}Sr_{0.2}Co_{0.2}Fe_{0.8}O_{3}$ films", Materials Chemistry and Physics, Vol. 91, 2005, pp. 28-35. https://doi.org/10.1016/j.matchemphys.2004.10.041
  21. Hayashi K., Yamamoto O., Nishigaki Y., Minoura H., "Sputtered $La_{0.5}Sr_{0.5}MnO_3$-yttria stabilized zirconia composite film electrodes for SOFC", Solid State Ionics, Vol. 98, 1997, pp. 49-55. https://doi.org/10.1016/S0167-2738(97)00098-2
  22. Brinker C.J., Frye G.C., Hurd A.J., Ashley C.S., "Fundamentals of sol-gel dip coating", Thin Solid Films, Vol. 201, 1991, pp. 97-108. https://doi.org/10.1016/0040-6090(91)90158-T
  23. Brinkera C.J., Hurda A.J., Schunka P.R., Fryea G.C., Ashleya C.S., "Review of sol-gel thin film formation", J. Non-Crystalline Solids, Vol. 147-148, 1992, pp. 424-436. https://doi.org/10.1016/S0022-3093(05)80653-2
  24. Pederson L.R., Singh P., Zhou X.-D., "Application of Vacuum Deposition Methods to Solid Oxide Fuel Cells", Vacuum, Vol. 80, 2006, pp. 1066- 1083. https://doi.org/10.1016/j.vacuum.2006.01.072
  25. De Jonghe L.C., Jacobson C.P., Visco S.J., "Supported electrolyte thin film synthesis of solid oxide fuel cells", Annu. Rev. Master. Res., Vol. 33, 2003, pp. 169-182. https://doi.org/10.1146/annurev.matsci.33.041202.103842
  26. Hobein B., Tietz F., Stover D., Cekada M., Panjan P., "DC sputtering of yttria-stabilised zirconia films for solid oxide fuel cell applications", J. Eur. Cream. Soc. Vol. 21, 2001, pp. 1843-1846. https://doi.org/10.1016/S0955-2219(01)00127-3
  27. Hibino T., Ushiki K., Kuwahara Y., "New concept for simplifying SOFC system", Solid State Ionics, Vol. 91, 1996, pp. 69-74. https://doi.org/10.1016/S0167-2738(96)00437-7
  28. Yano M., Tomita A., Sano M., Hibino T., "Recent advances in single-chamber solid oxide fuel cells: A review", Solid State Ionics, Vol. 177, 2007, pp. 3351-3359. https://doi.org/10.1016/j.ssi.2006.10.014
  29. Koh J. H., You Y. S., Park J. W., and Lim H. C., "Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel", Solid State Ionics, Vol. 149, 2002, pp. 157-166. https://doi.org/10.1016/S0167-2738(02)00243-6