DOI QR코드

DOI QR Code

발전용 신종액체 연료의 연소반응성 해석

Study on the Combustion Reactivity of Residual Oil as a New Fuel for Power Generation

  • 투고 : 2011.07.22
  • 심사 : 2011.08.22
  • 발행 : 2011.08.30

초록

This paper describes the evaluation of kinetic parameters for pyrolysis and carbon char oxidation of residual oil. The non-isothermal pyrolysis of residual oil was carried out with TGA (Thermo-Gravimetric Analyzer) at heating rate of 2, 5, 10 and $20^{\circ}C/min$ up to $800^{\circ}C$ under N2 atmosphere. The first order and nth order pyrolysis models were used to fit the experimental data, and the nth order model was turned out to follow the experimental data more precisely than the first order model. For carbon char oxidation experiment, TGA and four heating rates used in pyrolysis experiment were also adapted. The kinetic parameters for the residual carbon char particle were obtained with three char oxidation model, that is, volume reaction, grain and random pore model. Among them, the random pore model described the char oxidation behaviour quite well, compared to other two models. The non-linear regression method was used to obtain kinetic parameters for both pyrolysis and carbon char oxidation of residual oil.

키워드

참고문헌

  1. Gray, M.R., "Upgrading petroleum residues and heavy oils", Narcel Dekker, INC. 1994, pp. 1-3.
  2. Wolff, J., Radtke, K., Karg, J., Gunster, W., "Refinery residue based IGCC power plants and market potential", Gasification Technologies 2001 conference, San Francisco, 2001.
  3. 박태준, "중잔유 IGCC 플랜트의 건설 및 시운전 현황", IGCC W/S, RIST, Pohang, Korea, 2000.
  4. Fujimura, K., Mastumoto, H., Arakawa, Y., Fujii, H., Mizoguchi, T., "Development and operation results of VR firing boiler", Mitsubishi Juco Giho, 32, 1999, pp. 36-37. (See also http://www. mhi.co.jp/tech/htm/9362/e936211a.htm)
  5. Minoru, H., "Demonstrative operation plan of asphalt burning power plant in oil refinery", 17th WEC congress, CA, 1998.
  6. Aoki, H., Fukusima, H., Yoshida, D., "감압잔사유 연소보일러의 계획과 운전 실적", 화력원자력발전, Vol. 12, 2004, pp. 1-10.
  7. Choi, Y.C., Lee, J.G., Yoon, S.J., Park, M.H., "Experimental and theoretical study on the characteristics of vacuum residue gasification in an entrained flow reactor", Korean Journal of Chemical Engineering, Vol. 24, 2006, pp. 60-66. https://doi.org/10.1007/s11814-007-5010-7
  8. 박호영, 김영주, 김태형, 서상일, "소규모 반응로를 이용한 감압잔사유의 연소실험", 에너지공학, 14, 2005, pp. 268-276.
  9. Park, H.Y., Kim, Y.J., "Combustion characteristics of vacuum residue in a test furnace and its utilization for utility boiler", Korean Journal of Chemical Engineering, 24, 2006, pp. 83-92. https://doi.org/10.1007/s11814-007-5014-3
  10. Tokarska, A., "Investigation on the processing of oil vacuum residue and its mixture with coal and tars", Fuel, 75, 1996, pp. 1094-1100. https://doi.org/10.1016/0016-2361(96)00064-6
  11. Schucker, R.C., "Thermogravimetric determination of the coking kinetics of Arab heavy vacuum residue", Ind. Eng. Chem. Process Des. Dev. 22, 1983, pp. 615-619.
  12. Ichinose, T., Fujimura, K., Takeno, K., Motai, T., Arakawa, Y., Fujii, H., 1998. Combustion characteristics and pollution minimum technology for VR (Vacuum Residue) fired boiler. JSME International Journal. 41, 1998, pp. 1055-1060. https://doi.org/10.1299/jsmeb.41.1055
  13. George, R., Ritche, S., Roche, R. S., and Steedman, W., "Pyrolysis of Athabasca tar sands : analysis of the condensible products from Asphaltene", Fuel. Vol. 58, 1979, pp. 523-529. https://doi.org/10.1016/0016-2361(79)90171-6
  14. Martinez-Escandell, M., Torregrosa, P., Marsh, H., "Pyrolysis of petroleum residues : I. Yields and products analysis", Carbo, 37, 1999, pp. 1567-1582. https://doi.org/10.1016/S0008-6223(99)00028-7
  15. Torregrosa-Rodriguez, Martinez-Escandall, M. et al., "Pyrolysis of petroleum residue II. Chemistry of pyrolysis", Carbon, 38, 2000, pp. 535-546. https://doi.org/10.1016/S0008-6223(99)00133-5
  16. Park HY, Kim TH, "Non-isothermal pyrolysis of vacuum residue (VR) in a thermeogravimetric analyser", Energy conversion and managemen, Vol. 47, 2006, pp. 2118-2127. https://doi.org/10.1016/j.enconman.2005.12.009
  17. Inumaru, J., "초중질유 가스화로 수치해석 기술의 개발", 전력중앙연구소, 2001.
  18. Inumaru, J., "초중질유 가스화 복합발전의 실용화를 향한 가스화특성의 해명", 전력중앙연구소, 2002.
  19. Suzuki, M., Itoh, M., Mishima, M., Watanabe, Y., Tagegami, Y., "Two stage pyrolysis of heavy oils: 1. Pyrolysis of vacuum residue for olefin production in a batch type reactor", Fuel, 60, 1981, pp. 961-966. https://doi.org/10.1016/0016-2361(81)90092-2
  20. Itoh, M., Suzuki, T., Tshihiko, Y., Yoshii, K., Takegami, Y., Watanabe, Y., "Two-stage pyrolysis of heavy oils: 3. Pyrolysis of tar bitumens", Fuel, 62, 1983, pp. 98-101. https://doi.org/10.1016/0016-2361(83)90262-4
  21. Yue C., Watkinson A. P., "Pyrolysis of pith", Fuel, 77, 1998, pp. 695-711. https://doi.org/10.1016/S0016-2361(97)00236-6
  22. Yutai Q., "Investigation of serial reaction kinetics https://doi.org/10.1016/S0016-2361(00)00048-X
  23. Urban DL, Huey SPC, Dryer FL, "Evaluation of the coke formation potential of residual fuel oils", 24th symposium (International) on combustion, The Combustion Institute, Pittsburgh, 1992, pp. 1357-1364.
  24. Juntgen H, Van Heek KH, "An update of German non-isothermal coal pyrolysis work", Fuel Processing Technology, Vol. 2, 1979, pp. 261-293. https://doi.org/10.1016/0378-3820(79)90018-3
  25. Bhatia, S.K. and Perlmutter, D.D., "Random pore model for fluid-solid reactions", AIChE Journal, 26, 1980, pp. 379-389. https://doi.org/10.1002/aic.690260308
  26. Miura, K. and Silveston P.L., "Analysis of gassolid reactions by use of a temperature -programmed reaction rechnique", Energy and Fuel, 3, 1989, pp. 243-249. https://doi.org/10.1021/ef00014a020
  27. 남현우, 강경수, 배기광, 김창희, 조원철, 김영호, 박주식, "TGA를 이용한 $Fe_{2}O_{3}/ZrO_{2}$의 환원/물 분해/공기산화 kinetic 연구", 한국수소 및 신에너지학회, 22, 2011, pp.168-177.