DOI QR코드

DOI QR Code

Self-healing Engineering Materials: I. Organic Materials

자기치유 공학재료: I. 유기 재료

  • Choi, Eun-Ji (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Wang, Jing (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Yoon, Ji-Hwan (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University) ;
  • Yun, Ju-Ho (Environmental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University)
  • 최은지 (부산대학교 고분자공학과) ;
  • 왕징 (부산대학교 고분자공학과) ;
  • 윤지환 (부산대학교 고분자공학과) ;
  • 심상은 (인하대학교 화학공학과) ;
  • 윤주호 (자동차부품연구원) ;
  • 김일 (부산대학교 고분자공학과)
  • Received : 2010.11.02
  • Accepted : 2010.12.10
  • Published : 2011.03.31

Abstract

Scientists and engineers have altered the properties of materials such as metals, alloys, polymers, ceramics, and so on, to suit the ever changing needs of our society. Man-made engineering materials generally demonstrate excellent mechanical properties, which often tar exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without intentional human interaction. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account. Various self-healing ptotocols that can be applied for the organic materials such as polymers, ionomers and composites can be developed by utilizing suitable chemical reactions and physical intermolecular interactions.

과학자와 공학자들은 끊임없이 금속, 합금, 고분자, 세라믹 등의 공학재료의 성질을 계속해서 변화하는 사회의 요구에 부응하는 방향으로 개선하여 왔다. 인조 공학재료는 일반적으로 기계적 성질이 우수하여, 자연 재료의 기계적 성질보다 우수한 경우가 많다. 그러나, 이와 같은 공학 재료는 자연계에서 흔히 볼 수 있는 자기 치유능력, 즉 고의적인 인간의 접촉을 거치지 않고도 미세균열을 제거하는 능력이 부족하다. 자연에서 관측할 수 있는 손상관리 패러다임은 여러 가지 종류의 공학재료의 고유성질을 잘 고려하면 인조공학 재료에서도 성공적으로 재현할 수 있다. 특히 적절한 화학반응과 분자간력을 응용하면 고분자, 아이오노머, 복합체와 같은 유기재료에 적용할 수 있는 다양한 자기치유 방법을 개발할 수 있다.

Keywords

References

  1. Martin D. Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S., and Schubert, U. S., "Self Healing Materials," Adv. Mater., Article first published online: 13 SEP 2010, DOI: 10.1002/ adma.201003036.
  2. Ghosh, S. K., "Self-healing Materials: Fundamentals, Design Strategies, and Applications," Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.
  3. White, S. R., Sottos, N. R., Geubell, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., and Viswanathan, S., "Autonomous Healing of Polymer Composites," Nature, 409, 794-797 (2001). https://doi.org/10.1038/35057232
  4. Brown, E. N., Sottos, N. R., and White, S. R., "Fracture Testing of a Self-healing Polymer Composite," Exp. Mech., 42, 372-379 (2002). https://doi.org/10.1007/BF02412141
  5. Brown, E. N., Sottos, N. R., and White, S. R., "Microcapsule Induced Toughening in a Self-healing Polymer Composite," J. Mater. Sci., 39, 1703-1710 (2004). https://doi.org/10.1023/B:JMSC.0000016173.73733.dc
  6. Brown, E. N., White, S. R., and Sottos, N. R., "Retardation and Repair of Fatigue Cracks in a Microcapsule Toughened Epoxy Composite-Part I: Manual Infiltration," Compos. Sci. Technol., 65, 2466-2473 (2005). https://doi.org/10.1016/j.compscitech.2005.04.020
  7. Brown, E. N., White, S. R., and Sottos, N. R., "Retardation and Repair of Fatigue Cracks in a Microcapsule Toughened Epoxy Composite - Part II: In Situ Self-healing," Compos. Sci. Technol., 65, 2474-2480 (2005). https://doi.org/10.1016/j.compscitech.2005.04.053
  8. Brown, E. N., Sottos, N. R., and White, S. R., "Fatigue Crack Propagation in Microcapsule Toughened Epoxy," J. Mater. Sci., 41, 6266-6273 (2006). https://doi.org/10.1007/s10853-006-0512-y
  9. Mookhoek, S. D., Blaiszik, B.J., Fischer, H.R., Sottos, N.R., White, S.R., and van der Zwaag, S., "Peripherally Decorated Binary Microcapsules Containing Two Liquids," J. Mater. Chem., 18, 5390-5394 (2008). https://doi.org/10.1039/b810542a
  10. Hayes, S. A., Jones, F. R., Marshiya, K., and Zhang, W., "A Self-healing Thermosetting Composite Material," Compos. Part A, 38, 1116-1121 (2007). https://doi.org/10.1016/j.compositesa.2006.06.008
  11. Hayes, S. A., Zhang,W., Branthwaite, M., and Jones, F. R., "Self-healing of Damage in Fibrereinforced Polymer-matrix Composites," J. R. Soc. Interface, 4, 381-387 (2007). https://doi.org/10.1098/rsif.2006.0209
  12. Cho, S. H., Andersson, H. M., White, S. R., Sottos, N. R., and Braun, P. V., "Polydimethylsiloxane-based Self-healing Materials," Adv. Mater., 18, 997-1000 (2006). https://doi.org/10.1002/adma.200501814
  13. Mookhoek, S. D., Mayo, S. C., Hughes, A. E., Fischer, H. R., and Zwaag, v. d. S., "Applying SEM-Based X-ray Microtomography to Observe Self-healing in Solvent Encapsulated Thermoplastic Materials," Adv. Eng. Mater., 12, 228-234 (2010). https://doi.org/10.1002/adem.200900289
  14. Wakabayashi, K., and Register, R. A., "Morphological Origin of the Multistep Relaxation Behavior in Semicrystalline Ethylene/ Methacrylic Acid Ionomers," Macromolecules, 39, 1079- 1086 (2006). https://doi.org/10.1021/ma052081v
  15. Varley, R. J., and van der Zwaag, S., "The Development of a Quasi-static Test Method to Investigate the Origin of Self Healing in Ionomers under Ballistic Conditions," Polym. Test., 27, 11-19 (2008). https://doi.org/10.1016/j.polymertesting.2007.07.013
  16. Varley, R. J., and van der Zwaag, S., "Towards an Understanding of Thermally Activated Self-healing of an Ionomer System During Ballistic Penetration," Acta Mater., 56, 5737- 5750 (2008). https://doi.org/10.1016/j.actamat.2008.08.008
  17. Chen, X., Dam, M. A., Ono, K., Mal, A. K., Shen, H., Nutt, S. R., and Wudl, F., "A Thermally Remendable Crosslinked Polymeric Material," Science, 295, 1698-1702 (2002). https://doi.org/10.1126/science.1065879
  18. Chen, X., Wudl, F., Mal, A. K., Shen, H., and Nutt, S. R., "New Thermally Remendable Highly Crosslinked Polymeric Materials," Macromolecules, 36, 1802-1807 (2003). https://doi.org/10.1021/ma0210675
  19. Sijbesma, R. P., Beijer, F. H., Brunsveld, L., Folmer, B. J. B., Hirschberg, J. H. K., Lange, R. F. M., Lowe, J. K. L., and Meijer, E. W., "Reversible Polymers Formed from Selfcomplementary Monomers Using Quadruple Hydrogen Bonding," Science, 278, 1601-1604 (1997). https://doi.org/10.1126/science.278.5343.1601
  20. Cordier, P., Tournhilac, F., Soulie-Ziakovic, C., and Leibler, L., "Self-healing in a Thermoreversible Rubber from Supramolecular Assembly," Nature, 451, 977-980 (2008). https://doi.org/10.1038/nature06669
  21. Dry, C., "Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibres into Cement Matrices," Smart Mater. Struct., 3, 118-123 (1994). https://doi.org/10.1088/0964-1726/3/2/006
  22. Dry, C., "Procedure Developed for Self-repair of Polymer Matrix Composite Materials," Compos. Struct., 35, 263-269 (1996). https://doi.org/10.1016/0263-8223(96)00033-5
  23. Dry, C., "Three Designs for the Internal Release of Realants, Adhesives and Waterproofing Chemicals into Concrete," Cement. Concrete. Res., 30, 1969-1977 (2000). https://doi.org/10.1016/S0008-8846(00)00415-4
  24. Bleay, S. M., Loader, C. B., Hawyes, V. J., Humberstone, L., and Curtis, P. T., "A Smart Repair System for Polymer Matrix Composites," Composites A., 32, 1767-1776 (2001). https://doi.org/10.1016/S1359-835X(01)00020-3
  25. Trask, R. S., and Bond, I. P., "Biomimetic Self-healing of Advanced Composite Structures Using Hollow Glass Fibres," Smart Mater. Struct., 15, 704-710 (2006). https://doi.org/10.1088/0964-1726/15/3/005
  26. Trask, R. S., Williams, G. J., and Bond, I. P., "Bioinspired Self-healing of Advanced Composite Structures Using Hollow Glass Fibres," J. R. Soc. Interface, 4, 363-371 (2007). https://doi.org/10.1098/rsif.2006.0194
  27. Trask, R. S., Williams, H., and Bond, I. P., "Self-healing Polymer Composites: Mimicking Nature to Enhance Performance," Bioinspir. Biomim., 2, 1-9 (2007). https://doi.org/10.1088/1748-3182/2/1/001
  28. van der Zwaag, S., "Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science," vol. 100, Springer Series in Materials Science, Dordrecht, The Netherlands, Springer, 2007.