DOI QR코드

DOI QR Code

Applicability Test of a Wetting and Drying Scheme for KU-RLMS Model

KU-RLMS 모형의 잠김-드러남 기법 적용성 평가

  • 이남주 (경성대학교 공과대학 토목공학과)
  • Received : 2010.08.02
  • Accepted : 2011.04.19
  • Published : 2011.04.28

Abstract

A wetting and drying(WAD) scheme was introduced in KU-RLMS which is a two-dimensional depth-averaged unsteady model, and applicability tests for wetting and drying were performed in this study. WAD scheme in the model uses a mathematically less elegant but numerically easier method to test for dry or wet cells at each time step, then to apply blocking conditions for fluxes at cells' interfaces. WAD scheme introduced in the model was verified against an analytical solution in a frictionless parabolic basin. It was found that there occurs a little phase difference between analytical and numerical solution and little decrease of amplitude of numerical result. I used three test channels having a linear sloping bottom topography, a stepwise bottom topography, and a stepwise, a bumpy and bowl-shaped bottom topography. It could be found that numerical simulation results in test channels have similar shapes of Balzano[4] and Oey[15].

이 연구에서는 수심적분된 이차원 비정상 수치모형인 KU-RLMS 모형에 잠김/드러남 기법을 도입하고, 추가된 WAD 기법의 적용성 평가를 수행하였다. 이 모형에 사용된 WAD 기법은 수학적으로는 다소 불완전하지만 수치적으로는 손쉬운 방법으로써, 각 시간 단계에서 잠긴 격자 또는 드러난 격자를 시험하고, 각 격자의 경계에서 플럭스에 대한 개폐 조건을 적용하는 방법을 사용하였다. 모형에 도입한 잠김/드러남 처리 과정의 정확도 검증은 포물형 수조에 대한 해석해와 수치모형의 결과를 비교하는 방법을 사용하였다. 수치해와 해석해의 위상차가 발생하는 것을 확인할 수 있으며, 진폭은 조금씩 감소하는 현상이 나타났다. KU-RLMS 흐름모형의 잠김/드러남 처리 과정을 시험하기 위한 지형은 선형경사수로, 수평계단수로, 저류공간수로를 선택하였다. 세 가지 시험수로에 대한 수치모의 결과는 Balzano[4]와 Oey[15]의 수치모의 결과와 유사한 거동을 보임을 확인할 수 있었다.

Keywords

References

  1. 이남주, "좌표변환에 의한 이차원 유사이동모형의 개발 및 적용", 공학박사 학위논문, 서울대학교, 1966.
  2. 이남주, 이길성, "좌표변환에 의한 이차원 유사이동모형(I) - 모형의 개발", 대한토목학회논문집, 제18권, 제II-5호, pp.407-412, 1998a.
  3. 이남주, 이길성, "좌표변환에 의한 이차원 유사이동모형(II) - 모형의 적용", 대한토목학회논문집, 제18권, 제II-5호, pp.423-436, 1998b.
  4. A. Balzano, "Evaluation of methods for numerical simulation of wetting and drying in shallow water flow models," Coastal Engineering, 34, pp.83-107, 1998. https://doi.org/10.1016/S0378-3839(98)00015-5
  5. V. Casulli and R. Cheng, "Semi-implicit finite difference methods for three-dimensional shallow water flow," Int. J. Numer. Methods Fluids, 15, pp.629-648, 1992. https://doi.org/10.1002/fld.1650150602
  6. R. T. Cheng, V. Casulli, and J. W. Gartner, "Tidal, residual, intertidal mudflat(TRIM) model and its application to SanFrancisco Bay, California," Estuarine, Coastal Shelf Sci., 36, pp.235-280, 1993. https://doi.org/10.1006/ecss.1993.1016
  7. R. A. Flather and K. P. Hubbert, "Tide and surge models for shallow-water-Morecambe Bay revisited," In: Davies, A. M.(Ed.), Modeling Marine Systems, Vol.1. CRC Press, pp.135-166, 1990.
  8. K. A. Hoffmann and S. T. Chiang, (Computational Fluid Dynamics for Engineers, Vol. I, Eingineering Education System, 1993.
  9. Z. G. Ji, M. R. Morton, and J. M. Hamrick, "Wetting and drying simulation of estuarine processes," Estuarine, Coastal Shelf Sci., 53, pp.683-700, 2001. https://doi.org/10.1006/ecss.2001.0818
  10. Z. Kowalik and T. S. Murty, Numerical Modeling of Ocean Dynamics. World Scientific, Singapore, 1993.
  11. J. J. Leendertse, Aspects of a Computational Model for Long-Period Water-Wave Propagation, U. S. Air Force Project, RAND Memorandom RM 5294, The Rand Cooperation, 1967.
  12. J. J. Leendertse, Aspects of SIMSYS, A System for Two-Dimensional Flow Computations. RAND Publication R-3572-USGS, 1987.
  13. D. R. Lynch and W. G. Gray, "Finite element simulation of shallow water problems with moving boundaries," Finite Elements in Water Resources. Pentech Press, London, pp.2.23-2.42, 1978.
  14. F. Marche and P. Bonneton, "A simple and efficient well-balanced scheme for 2D bore propagation and run-up over a sloping beach," Proc. 30th Int. Conf. on Coastal Eng., 1, pp.998-1010, 2006.
  15. L. Y. Oey, "A wetting and drying scheme for POM," Ocean Modelling, 9, pp.133-150, 2005. https://doi.org/10.1016/j.ocemod.2004.06.002
  16. V. M. Ponce and S. B. Yabusaki, "Modeling circulation in depth-averaged flow," J. of the Hydraulics Div. ASCE, Vol.107, No.HY11, pp.1501-1518, 1981.
  17. R. O. Reid and R. E. Whitaker, "Wind-driven flow of water influenced by a canopy," J. Waterways, Harbors Coastal Eng. Division, ASCE, 102, WW1, pp.61-77, 1976.
  18. G. Ryskin and L. G. Leal, "Orthogonal mapping," J. of Computational Physics, Vol.50, pp.71-100, 1983. https://doi.org/10.1016/0021-9991(83)90042-6
  19. G. S. Stelling, On the construction of computational methods for shallow water equations. Rijkswaterstaat communication No. 35, 1984.
  20. G. S. Stelling, A. K. Wiersma, and J. B. T. M. Willemse, "Practical aspects of accurate tidal computations," J. of Hyd. Eng., ASCE, No.112, Vol.9, pp.802-817, 1986.
  21. W. C. Thacker, "Some exact solutions to the nonlinear shallow-water wave equations," J. Fluid Mechanics 107, pp.499-508, 1981. https://doi.org/10.1017/S0022112081001882

Cited by

  1. Flow Simulation in a Meandering Channel using a 2-dimensional Numerical Model vol.13, pp.5, 2013, https://doi.org/10.5392/JKCA.2013.13.05.485