DOI QR코드

DOI QR Code

Fabrication of Hybrid NiO/ACF/TiO2 Composites and Their Photocatalytic Activity Under Visible Light

  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Han, Sang-Bum (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Kim, Doo-Hwan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Park, Chong-Yeon (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Received : 2011.03.25
  • Accepted : 2011.04.21
  • Published : 2011.05.31

Abstract

Nickel oxide-doped ACF and $TiO_2$ composites (NiO/ACF/$TiO_2$) were prepared by a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, transmission electron microscopy and energy dispersive X-ray analysis. A methylene blue (MB) solution under visible light irradiation was used to determine their photocatalytic activity. Excellent photocatalytic degradation of the MB solution was observed using the $TiO_2$, Ti-ACF and NiO/ACF/$TiO_2$ composite under visible light.

Keywords

References

  1. F. J. Zhang, M. L. Chen, K. Zhang, and W. C. Oh, “Visible Light Phocoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotuble/titania Composite Electrodes,”Bull. Kor. Chem. Soc., 31 133-39 (2010). https://doi.org/10.5012/bkcs.2010.31.01.133
  2. M. L. Chen, F. J. Zhang, K. Zhang, Z. D. Meng, and W. C. Oh, “Preparation of Carbon-$TiO_2$ Composites by Using Different Carbon Sources with Titanium n-butoxide and Their Photocatalytic Activity,” Elas. Comp., 45 25-31 (2010).
  3. Z. D. Meng, K. Zhang, and W. C. Oh, “Preparation of Fe-AC/$TiO_2$ Composites and pH Dependence of Their Photocatalytic Activity for Methylene Blue,” J. Kor. Cry. Grow. Cry. Tech., 19 268-76 (2009).
  4. Y. Yang, X. Li, J. Chen, and L. Wang, “Titanium Dioxide Mediated Photocatalyzed Degradation of a Textile Dye Derivative, Acid Orange 8, in Aqueous Suspensions,” J. Photochem. Photobiol. A: Chem., 163 517-22 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.008
  5. J. M. Herrmann and C. Guillard, “Photocatalytic Degradation of Pesticides in Agricultural Used Waters,” C. R.. Acad, Sci. Paris, Ser. IIc, 3 417-22 (2000).
  6. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Enviromental Applications of Semiconductor Photocatalysis,”Chem. Rev., 95 69-6 (1995). https://doi.org/10.1021/cr00033a004
  7. D. Duonghong, E. Borgarello, and M. Gratzel, “Dynamics of Light-induced Water Cleavage in Colloidal Systems,” J. Am. Chem. Soc., 103 4685-90 (1981). https://doi.org/10.1021/ja00406a004
  8. W. C. Oh, A. R. Jung, and W. B. Ko, “Characterization and Relative Photonic Efficiencies of a New Nanocarbon/$TiO_2$ Composite Photocatalyst Designed for Organic Dye Decomposition and Bactericidal Activity,” Mater. Sci. Eng., C 29 1338-47 (2009). https://doi.org/10.1016/j.msec.2008.10.034
  9. W. C. Oh, J. H. Son, F. J. Zhang, and M. L. Cheng, “Fabrication of Ni-AC/$TiO_2$ Composites and their Photocatalytic Activity for Degradation of Methylene Blue,” J. Kor. Ceram. Soc., 46 [1] 1-9 (2009). https://doi.org/10.4191/KCERS.2009.46.1.001
  10. F. J. Zhang and W. C. Oh, “Photoelectrocatalytic Properties of Mo-CNT/$TiO_2$Composite Electrodes Under Visible Light,” Asian J. Chem., 23 372-76 (2011).
  11. H. S. Li, Y. P. Zhang, S. Y. Wang, Q. Wu, and C. H. Liu, “Study on Nanomagnets Supported $TiO_2$ Photocatalysts Prepared by a sol-gel Process in Reverse Microemulsion Combining with Solvent-thermal Technique,” J. Hazard. Mater., 169 1045-53.
  12. F. J. Zhang, J. Liu, M. L. Chen, and W. C. Oh, “Photoelec-Trocatalytic Degradation of Dyes in Aqueous Solution using CNT/$TiO_2$ Electrode,” J. Kor. Ceram. Soc., 46 [3] 263-70 (2009). https://doi.org/10.4191/KCERS.2009.46.3.263
  13. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C.D. Valentin, and G. Pacchioni, “Origin of Photoactivity of Nitrogen-doped Titanium Dioxide Under Visible Light,” J. Am. Chem. Soc., 128 15666-71 (2006). https://doi.org/10.1021/ja064164c
  14. Y. Park, W. Y. Kim, H. W. Park, T. Tachikawa, T.Majima, and W. Y. Choi, “Carbon-doped $TiO_2$ Photocatalyst Synthe-Sized without Using an External Carbon Precursor and the Visible Light Activity,” Appli. Catalysis B: Envi., 91 355-62 (2009). https://doi.org/10.1016/j.apcatb.2009.06.001
  15. W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee, and W. B. Ko, “Characterization and Relative Photonic Efficiencies of a New Fe-ACF/$TiO_2$ Composite Photocatalysts Designed for Organic Dye Decomposition,” J. Ind. Eng. Chem., 15 190-95 (2009). https://doi.org/10.1016/j.jiec.2008.09.019
  16. W. Zhang, L. D. Zou, and L. Z. Wang, “A Novel Chargedriven Self-assembly Method to Prepare Visible-light Sensitive $TiO_2$/activated Carbon Composites for Dissolved Organic Compound Removal,” Chem. Eng. J., 168 485-92 (2011). https://doi.org/10.1016/j.cej.2011.01.061
  17. N. M. Hosny, “Synthesis, Characterization and Optical Band Gap of NiO Nanoparticles Derived from Anthranilic Acid Precursors Via a Thermal Decomposition Route,” Polyhedron, 30 470-76 (2011). https://doi.org/10.1016/j.poly.2010.11.020
  18. L. L. Ren, Y. P. Zeng, and D. L. Jiang, “The Improved Photocatalytic Properties of P-type NiO Loaded Porous $TiO_2$ Sheets Prepared Via Freeze Tape-casting,” Sol. Sta. Sci., 12 138-43 (2010). https://doi.org/10.1016/j.solidstatesciences.2009.09.021
  19. K. Nabeen, Shrestha, M. Yang, Y. C. Nah, I. Paramasivam, and P. Schmuki, “Self-organized $TiO_2$ Nanotubes: Visible Light Activation by Ni Oxide Nanoparticle Decoration,” Electrochem. Com., 12 254-57 (2010). https://doi.org/10.1016/j.elecom.2009.12.007
  20. X. W. Zhang, M. H. Zhou, and L. C. Lei, “Preparation of Photocatalytic $TiO_2$ Coating of Nanosized Particles Supported on Activated Carbon by AP-MOCVD,” Carbon, 43 1700-8 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  21. W. C. Oh, F. J. Zhang, Z. D. Meng, and K. Zhang, “Relative Photonic Properties of Fe/$TiO_2$-nanocarbon Catalysts for Degradation of MB Solution Under Visible Light,” Bull. Kor. Chem. Soc., 31 1128-34 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1128
  22. Y. Yang, X. Li, J. Chen, and L. Wang, “Titanium Dioxide Mediated Photocatalyzed Degradation of a Textile Dye Derivative, Acid Orange 8, in Aqueous Suspensions,” J. Photochem. Photobiol. A: Chem., 163 517-22 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.008
  23. L. Wu, J.C. Yu, X. Wang, L. Zhang, and J. Yu, “Characterization of Mesoporous Nanocrystalline $TiO_2$ Photocatalysts Synthesized Via a Sol-solvothermal Process at a Low Temperature,” J. Solid State Chem., 178 321-28 (2005). https://doi.org/10.1016/j.jssc.2004.11.009
  24. S. F. Chen, S. J. Zhang, W. Liu, and W. Zhao, “Preparation and Activity Evaluation of p–n Junction Photocatalyst NiO/$TiO_2$,” J. Hazard. Mater., 155 320-26 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.063
  25. J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, and F. Honggang, “The Preparation and Characterization of La doped $TiO_2$ Nanoparticles and Their Photocatalytic Activity,” J. Solid State Chem., 177 3375-82 (2004). https://doi.org/10.1016/j.jssc.2004.05.064
  26. M. V. Shankar, K. K. Cheralthan, B. Arabindoo, M. Palanichamy, and V. “Murugesan, Enhanced Photocatalytic Activity for the Destruction of Monocrotophos Pesticide by $TiO_2/H{\beta}$,” J. Mol. Catal., 223 195-200 (2004). https://doi.org/10.1016/j.molcata.2004.03.059
  27. M. V. Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo, and V. Murugesan, “Fine Route for an Efficient Removal of 2,4-dichlorophenoxyacetic Acid (2,4-D) by Zeolite-supported $TiO_2$,” Chemosphere, 63 1014-21 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.041
  28. Z. D. Meng, K. Y. Cho, and W. C. Oh, “Photocatalytic Degradation of Methylene Blue on Fe-fullerene/$TiO_2$ Under Visible-light Irradiation,” Asian J. Chem., 23 847-51 (2011).
  29. Y. Zhang, H. Zhang, Y. Xu, and Y. Wang, “Europium doped Nanocrystalline Titanium Dioxide: Preparation, Phase Transformation and Photocatalytic Properties,” J. Mater. Chem., 13 2261-65 (2003). https://doi.org/10.1039/b305538h
  30. M. Saif and M. S. A. Abdel-Mottaleb, “Titanium Dioxide Nanomaterial Doped with Trivalent Lanthanide Ions of Tb, Eu and Sm: Preparation, Characterization and POTENTIAL APPLICATIONs,” Inorg. Chim. Acta., 360 2863-74 (2007). https://doi.org/10.1016/j.ica.2006.12.052
  31. A. Neren Okte and O. Yilmaz, “Photodecolorization of Methyl Orange by Yttrium Incorporated $TiO_2$ Supported ZSM-5,” Appli. Cataly. B. Environ., 85 92-102 (2008). https://doi.org/10.1016/j.apcatb.2008.07.025
  32. L. Wu, J.C. Yu, X. Wang, L. Zhang, and J. Yu, “Characterization of Mesoporous Nanocrystalline $TiO_2$ Photocatalysts Synthesized Via a Sol-solvothermal Process at a Low Temperature,” J. Solid State Chem., 178 321-28 (2005). https://doi.org/10.1016/j.jssc.2004.11.009
  33. F. J. Zhang, M. L. Chen, and W. C. Oh, “Electro-chemical Preparation of $TiO_2$/CNT Electrolyte and Their Photoelectrocatalytic Effect,” J. Kor. Ceram. Soc., 46 [6] 554-60 (2009). https://doi.org/10.4191/KCERS.2009.46.6.554
  34. Y. Ao, J. Xu, D. Fu, X. Shen, and C. Yuan, “Low Temperature Preparation of Anatase $TiO_2$-Coated Activated carbon,”Colloid Surfaces, 312 125-30 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.039
  35. G. Colon, M. C. Hidalgo, and J. A. Navio, “A Novel Preparation of High Surface Area $TiO_2$ Nanoparticles from Alkoxide Precursor and Using Activated carbon as Additive,” Catal. Today, 76 91-101 (2002). https://doi.org/10.1016/S0920-5861(02)00207-9
  36. J. Matos, J. Laine, and J. Herrmann, “Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon,” Appl. Catal. B:Environ., 18 281-91 (1998). https://doi.org/10.1016/S0926-3373(98)00051-4
  37. S. F. Chen and G. Y. Cao, “The Preparation of Nitrogendoped Photocatalyst $TiO_2xNx$ by Ball Milling,” Chem. Phys. Lett., 413 404-9 (2005). https://doi.org/10.1016/j.cplett.2005.08.038
  38. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides,” Science, 293 269-71 (2001). https://doi.org/10.1126/science.1061051
  39. Y. S. Chen, J. C. Crittenden, S. Hackney, L. Sutter, and D. W. Hand, “Preparation of a Novel $TiO_2$-based p–n Junction Nanotube Photocatalyst,” Environ. Sci. Technol., 39 1201-8 (2005). https://doi.org/10.1021/es049252g
  40. Y. Huang, W. K. Ho, Z. H. Ai, X. Song, L. Z. Zhang, and S. C. Lee, “Aerosol-assisted Flow Synthesis of B-doped, Nidoped and B–Ni-codoped $TiO_2$ Solid and Hollow Microspheres for Photocatalytic Removal of NO,” App. Catal. B:Environ., 89 398-405 (2009). https://doi.org/10.1016/j.apcatb.2008.12.020
  41. H. Yu, X. J. Li, S. J. Zheng, and W. Xu, “Photocatalytic Activity of $TiO_2$ Thin Film Non-uniformly Doped by Ni” Mater. Chem. Phys., 97 59-63 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.069

Cited by

  1. Effect of nickel doping on the optical property and photocatalytic activity of titanium dioxide nanoparticles vol.8, pp.4, 2013, https://doi.org/10.1049/mnl.2012.0738