DOI QR코드

DOI QR Code

Lightweight Characteristics and Sintering behavior of Porcelain by Addition FAHM(Fly-Ash Hollow Microsphere)

FAHM(Fly-Ash Hollow Microsphere)첨가에 의한 도자기의 소성특성과 경량화

  • 김근희 (한국세라믹기술원 도자세라믹센터) ;
  • 피재환 (한국세라믹기술원 도자세라믹센터) ;
  • 김종영 (한국세라믹기술원 도자세라믹센터) ;
  • 조우석 (한국세라믹기술원 도자세라믹센터) ;
  • 김경자 (한국세라믹기술원 도자세라믹센터)
  • Received : 2011.02.15
  • Accepted : 2011.03.30
  • Published : 2011.05.31

Abstract

Sintering behavior and lightweight characteristics of porcelain by addition of FAHM (Fly-Ash Hollow Microsphere) were evaluated. Green body of Backja composition (general porcelain) in which FAHM was added(15 and 20 wt%) was made by slip casting method. The green body was sintered at 1270 and $1290^{\circ}C$ and maintained for 1h. The bulk density and linear shrinkage of the sintered body with FAHM (20 wt%) decreased. As the contents of FAHM. increased, mullite and cristobalite phases increased. In the microstructure, FAHM shells remained after sintering, and the generation of mullite fibers around FAHM shells also were confirmed. the weight of porcelain with of 20% FAHM decreased by 40% and residual FAHM shells promoted the mullite of generation in the matrix.

Keywords

References

  1. S. M. Han, D. Y. Shin, and S. K. Kang, “Preparation for Porous Ceramics Using Low Grade Clay (in Korean),” J. Kor. Ceram. Soc., 35 [6] 575-82 (1998).
  2. T. Fukasawa and M. Ando, “Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing,” J. Am. Ceram. Soc., 84 [1] 230-32 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  3. S. H. Chae, Y. W. Kim, I. H. Song, H. D. Kim, and J. S. Bae, “Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (in Korean),” J. Kor. Ceram. Soc., 46 [1] 35-40 (2009). https://doi.org/10.4191/KCERS.2009.46.1.035
  4. S. H. Lee, “The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (in Korean),” J. Kor. Ceram. Soc., 32 [5] 626-34 (1995).
  5. Y. He, W. Cheng, and H. Cai, “Characterization of a-Cordierite Glass-Ceramics from Fly Ash,” J. Hazard. Mater. B, 120 265-69 (2005). https://doi.org/10.1016/j.jhazmat.2004.10.028
  6. W. Y. Kim, H. B. Ji, T. Y. Yang, S. Y. Yoon, and H. C. Park, “Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash (in Korean),” J. Kor. Ceram. Soc., 47 [2] 151-56 (2010). https://doi.org/10.4191/KCERS.2010.47.2.151
  7. Y. J Jung, Y. S. Chu, J. K. Lee, and H. Song, “Physical Properties of Lightweight Materials According to the Replacement Ratios of the Admixture (in Korean),” J. Kor. Ceram. Soc., 46 [6] 633-38 (2009). https://doi.org/10.4191/KCERS.2009.46.6.633
  8. H. S. Kim, “Effect of Crystal Phases on the Properties of Sintered Glass-Ceramics for $CaO-MgO-Al_2O_3-SiO_2$ System (in Korean),” J. Kor. Ceram Soc., 29 [7] 558-64 (1992).
  9. Sewri, S. Park, and Y. J. Chung, “A Study on the Ceramic Body and Art Glaze by Using Coal Ash (in Korean),” J. Kor. Ceram. Soc., 46 [6] 548-53 (2009). https://doi.org/10.4191/KCERS.2009.46.6.548
  10. R. Goren, C. Ozgur, and H. Gocmez, “The Preparation of Cordierite from Talc, Fly Ash, Fused Silica and Alumina Mixtures,” Ceram. Int., 32 53-6 (2006). https://doi.org/10.1016/j.ceramint.2005.01.001
  11. S. J. Kim, H. G. Bang, and S. Y. Park, “Properties and Synthesis of Porous Cordierite from Fly Ash (in Korean),” J. Kor. Ceram. Soc., 43 [6] 344-50 (2006). https://doi.org/10.4191/KCERS.2006.43.6.344
  12. T. K. Mukhopadhyay, S. Ghosh, S. Ghatak, and H. S. Maiti, “Effect of Fly Ash on the Physico-Chemical and Mechanical Properties of a Porcelain Composition,” Ceram. Int., 36 1055-62 (2010). https://doi.org/10.1016/j.ceramint.2009.12.012
  13. I. S. Kim, S. H. Kim, J. S. Park, J. Y. Kang, K. H. Lee, and B. H. Lee, “Effect of Mullite on High Alumina Refractory (II) (in Korean),” J. Kor. Ceram. Soc., 38 [3] 238-44 (2001).
  14. G. H. Kim, H. S. Choi, J. H. Pee, W. S. Cho, and K. J. Kim, “Lightweight Porcelain using GHM(Glass Hollow Microsphere) (in Korean),” J. Kor. Ceram. Soc., 48 [1] 74-9 (2011). https://doi.org/10.4191/KCERS.2011.48.1.074