DOI QR코드

DOI QR Code

Saturable Absorber Reflectors Based on Guided-mode Resonance in Slot Waveguides

도파로공진을 이용한 슬롯도파로 포화흡수체 반사기

  • Kim, Myung-Hwan (Department of Electronic Engineering and Computer, Ajou University) ;
  • Kim, Sang-In (Department of Electronic Engineering and Computer, Ajou University)
  • Received : 2011.02.15
  • Accepted : 2011.04.18
  • Published : 2011.06.25

Abstract

We propose a saturable absorber reflector based on guided-mode resonance. A carbon nanotube is used as a saturable absorber. By tuning the fill factor, modulation depth can be increased without a change of height of the CNT. We investigate the reflector properties such as modulation depth, bandwidth and peak reflectance as a function of the height of the CNT and the fill factor. The advantage of the proposed reflector is that it can reduce saturation energy by 50 times compared with CNT thin film of 100~200nm.

본 논문에서는 도파모드공진을 이용한 포화흡수체 반사기를 제안하였다. 포화흡수체로는 탄소나노튜브(CNT)를 사용하였다. 제안된 반사기는 CNT의 두께 변화 없이 modulation depth를 키울 수 있다는 장점이 있다. 제안하는 반사기의 fill factor(F)와 CNT의 두께변화에 따른 modulation depth, 대역폭, 포화되었을 때의 최대 반사율의 특징을 알아보았다. 제안된 반사기는 포화에너지를 줄일 수 있다는 장점이 있고, 100~200nm 얇은 CNT박막에서 50배정도 줄어드는 것을 확인 하였다.

Keywords

References

  1. H. A. Haus, Waves and Field in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, USA, 1984).
  2. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, USA, 1985).
  3. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). https://doi.org/10.1038/nature01938
  4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors(SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Select. Topics Quantum Electron. 2, 435-453 (1996). https://doi.org/10.1109/2944.571743
  5. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, "Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers," Advanced Functional Materials 20, 1937-1943 (2010). https://doi.org/10.1002/adfm.200902368
  6. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-913 (1985). https://doi.org/10.1109/PROC.1985.13220
  7. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonance in planar dielectric-layer diffraction in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 7, 1470-1474 (1990). https://doi.org/10.1364/JOSAA.7.001470
  8. S. Fan and J. D. Joannopoulos, "Analysis of guided resonance in photonic crystal slabs," Phys. Review B 65, 235112 (2002). https://doi.org/10.1103/PhysRevB.65.235112
  9. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). https://doi.org/10.1063/1.107703
  10. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2612 (1993). https://doi.org/10.1364/AO.32.002606
  11. S. Tibuleac and R. Magnusson, "Reflection and transmission guided-mode resonance filters," J. Opt. Soc. Am. A 14, 1617-1626 (1997). https://doi.org/10.1364/JOSAA.14.001617
  12. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, "Optical bistable device based on guided-mode resonance in slab waveguide grating," Opt. Express 17, 23459-23467 (2009). https://doi.org/10.1364/OE.17.023459
  13. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). https://doi.org/10.1364/OL.29.001209
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995). https://doi.org/10.1364/JOSAA.12.001068