DOI QR코드

DOI QR Code

수정된 화인 맵을 이용한 2-파장 홀로그래피와 잡음 제거 연구

Study on Error Reduction in Dual Wavelength Digital Holography Using Modified Fine Map

  • 투고 : 2011.03.02
  • 심사 : 2011.04.22
  • 발행 : 2011.06.25

초록

2-파장 홀로그래피에서 수정된 화인 맵을 이용하여 2-파장 홀로그래피에서 발생하는 잡음 증폭현상을 줄이는 연구를 수행하였다. 일반 적인 화인 맵은 측정체의 단차가 2-파장 홀로그래피에 사용되는 광원의 파장보다 작은 경우에는 잡음을 잘 줄일 수 있으나, 단차가 파장 보다 큰 경우에는 측정 결과에 영향을 주어 잘못 된 측정 결과를 보인다. 이러한 오차를 줄이기 위하여 수정된 화인 맵을 이용하였으며, 그 결과 측정체의 단차가 파장 보다 큰 경우에도 측정에 영향을 주지 않고 잡음을 줄일 수 있음을 확인 하였다.

Dual-wavelength holography has better axial range than single-wavelength holography, allowing unambiguous phase imaging but at the expense of increased noise. We have studied error reduction in dual wavelength holography using a modified fine map. The fine map is successful in measurement and has shown error reduction when the height of the object is less than the appled wavelength, but is unstable when the step height is larger than that wavelength. We have modified the fine map and we have found that the modified fine map was successful in measurement and error reduction even though the height of object was larger than the wavelength.

키워드

참고문헌

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, "Reconstruction of hologram with a computer," Sov. Phys. Tech. 17, 434-444 (1972).
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, "Investigation of-micro-opto-electro-mechanical components with a holographic microscopic interferometer," Proc. SPIE 3396, 238-243 (1998). https://doi.org/10.1117/12.301528
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, "Studies of digital microscopic with application to microstructure testing," Appl. Opt. 40, 5046-5051 (2001). https://doi.org/10.1364/AO.40.005046
  5. H. Cho, J. Woo, D. Kim, S. Shin, and Y. Yu, "DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers," Opt. & Laser Technology 41, 741-745 (2009). https://doi.org/10.1016/j.optlastec.2009.01.001
  6. S. Shin, D. Kim, and Y. Yu, "Study on digital holography with conjugated hologram," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 21, 146-150 (2010). https://doi.org/10.3807/KJOP.2010.21.4.146
  7. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. Am. A 11, 2011-2015 (1994). https://doi.org/10.1364/JOSAA.11.002011
  8. C. Wagneer, S. Seebacher, W. Osten, and W. Juptner, "Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology," Appl. Opt. 38, 4812-4820 (1999). https://doi.org/10.1364/AO.38.004812
  9. Y. Takaki and H. Ohzu, "Fast numerical reconstruction technique for high resolution hybrid holographic microscopy," Appl. Opt. 38, 2204-2055 (1999). https://doi.org/10.1364/AO.38.002204
  10. H. Cho, D. Kim, Y. Yu, W. Jung, and S. Shin, "3-dimensional measurement using digital holographic microscope and phase unwrapping," Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 17, 329-334 (2006). https://doi.org/10.3807/KJOP.2006.17.4.329
  11. C. Polhemus, "Two-wavelength interferometry," Appl. Opt. 12, 2071-2074 (1973). https://doi.org/10.1364/AO.12.002071
  12. K. Creath, Y. Cheng, and J. C. Wyant, "Contouring aspheric surfaces using two-wavelength phase-shifting interferometry," Opt. Acta 32, 1455-1464 (1985). https://doi.org/10.1080/713821689
  13. J. Gass, A. Dakoff, and M. K. Kim, "Phase imaging without 2-pi ambiguity by multi-wavelength digital holography," Opt. Lett. 28, 1141-1143 (2003). https://doi.org/10.1364/OL.28.001141
  14. S. Ryszard Choras, Image Processing & Communications Challenges 2 (Springer Publishing Co., 2010), Chapter 2.