DOI QR코드

DOI QR Code

반사형 장거리 정밀 변위 감지기용 광학계 설계 및 측정

Optical System Design and Experimental Demonstration of Long-range Reflective-type Precision Displacement Sensors

  • 임재인 (인하대학교 광자과학연구실) ;
  • 김승환 (인하대학교 광자과학연구실) ;
  • 이승훈 (인하대학교 광자과학연구실) ;
  • 정해원 (인하대학교 광자과학연구실) ;
  • 이민희 (인하대학교 광자과학연구실) ;
  • 김성환 (한진데이타) ;
  • 김경헌 (인하대학교 광자과학연구실)
  • 투고 : 2011.04.14
  • 심사 : 2011.05.03
  • 발행 : 2011.06.25

초록

본 논문에서는 반사형 장거리 정밀 변위 감지기용 광학계를 설계하고 실제 구성을 해 봄으로써 작동 성능을 측정한 결과를 소개하고자 한다. 10 m ~ 250 m 거리에 있는 교량 및 건축물 등의 진동 및 변위를 감지하는 장거리 변위 감지기용 광신호 송신 및 수신용 광학계를 설계하고, 관측 거리에 따라 관측 대상체에 다양한 반사광학계를 설치하여 실제 제작된 변위 감지기의 변위 감지 분해능을 측정하였다. 광신호 송신부는 두 개의 850 nm 파장대 LED와 수렴광학계로 구성되고, 수신부에서는 위치 센서(PSD: Position Sensitive Detector)와 망원형 수렴광학계가 사용되었다. 관측 대상체의 거리에 따라 10 m 거리에서는 0.1 mm 변위 분해능과 250 m 거리에서는 3 mm 이하의 변위 분해능이 가능함을 확인하였다.

This paper reports design and demonstration of optical systems for reflective-type remote optical displacement sensors. Optical systems for light illumination sources and a position sensitive detector (PSD) for the displacement sensor were developed to sense displacement of bridges and instability of skyscrapers in a distance range from 10 m to 250 m to an accuracy better than a few mm. Performance of the optical systems was verified by composing a displacement sensor and by using it in measurement of displacement of a remote target with proper reflective optics depending on distance. The displacement sensor was composed of two LED light sources, each with collimating optics, and a two-dimensional PSD with telescope-type optics. Its displacement resolutions was measured to be 0.1 mm at a distance of 10 m and less than 3 mm at a distance of 250 m.

키워드

참고문헌

  1. I. Kaisto, J. Kostamovaara, M. Manninen, and R. Myllyla, "Optical range finder for 1.5-10-m distances," Appl. Opt. 22, 3258-3264 (1983). https://doi.org/10.1364/AO.22.003258
  2. M.-C. Amann, T. B. M. Lescure, R. Myllyla, and M. Rioux, "Laser ranging: a critical review of usual techniques for distance measurement," Opt. Eng. 40, 10-19 (2001). https://doi.org/10.1117/1.1330700
  3. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, "Rapid and precise absolute distance measurements at long range," Nat. Photon. 3, 351-356 (2009). https://doi.org/10.1038/nphoton.2009.94
  4. A. Kilpela, R. Pennala, and J. Kostamovaara, "Precise pulsed time-of-flight laser range finder for industrial distance measurements," Rev. Sci. Instrum. 72, 2197-2202 (2001). https://doi.org/10.1063/1.1355268
  5. F. Chen and U. Mohideen, "Fiber optic interferometry for precision measurement of the voltage and frequency dependence of the displacement of piezoelectric tubes and frequency dependence of the displacement of piezoelectric tubes," Rev. Sci. Instrum. 72, 3100-3102 (2001). https://doi.org/10.1063/1.1378341
  6. J. Czarske, J. Mobius, and K. Moldenhauer, "Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces," Appl. Opt. 44, 5180-5189 (2005). https://doi.org/10.1364/AO.44.005180
  7. M. H. de la Torre Ibarra, P. D. Ruiz, and J. M. Huntley, "Simultaneous measurement of in-plane and out-of-plane displacement fields in scattering media using phase-contrast spectral optical coherence tomography," Opt. Lett. 34, 806-808 (2009). https://doi.org/10.1364/OL.34.000806