DOI QR코드

DOI QR Code

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells

후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성

  • Kim, Hyun-Ho (Department of Micro/Nano Systems, Korea University) ;
  • Kim, Seong-Tak (Department of Materials Science and Engineering, Korea University) ;
  • Park, Sung-Eun (Department of Materials Science and Engineering, Korea University) ;
  • Song, Joo-Yong (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Young-Do (Department of Materials Science and Engineering, Korea University) ;
  • Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kwon, Soon-Woo (R&D Center, TS Corporation) ;
  • Yoon, Se-Wang (R&D Center, TS Corporation) ;
  • Son, Chang-Sik (Department of Electronic Materials Engineering, Silla University) ;
  • Kim, Dong-Hwan (Department of Micro/Nano Systems, Korea University)
  • 김현호 (고려대학교 마이크로/나노 시스템) ;
  • 김성탁 (고려대학교 신소재공학과) ;
  • 박성은 (고려대학교 신소재공학과) ;
  • 송주용 (고려대학교 신소재공학과) ;
  • 김영도 (고려대학교 신소재공학과) ;
  • 탁성주 (고려대학교 신소재공학과) ;
  • 권순우 (대한제당주식회사 중앙연구소) ;
  • 윤세왕 (대한제당주식회사 중앙연구소) ;
  • 손창식 (신라대학교 전자재료공학과) ;
  • 김동환 (고려대학교 마이크로/나노 시스템)
  • Received : 2011.03.09
  • Accepted : 2011.04.06
  • Published : 2011.05.27

Abstract

To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

Keywords

References

  1. A. Wang, J. Zhao, S. R. Wenham and M. A. Green, Progress in Photovoltaics: Research and Applications, 4(1), 55 (1996). https://doi.org/10.1002/(SICI)1099-159X(199601/02)4:1<55::AID-PIP111>3.0.CO;2-P
  2. G. P. Willeke, Sol. Energ. Mater. Sol. Cell., 72(1-4), 191 (2002). https://doi.org/10.1016/S0927-0248(01)00164-7
  3. B. J. Kang, S. Park, S. H. Lee, H. Kim, B. G. Shin, S. Kwon, J. W. Byeon, S. Yoon and D. Kim, Kor. J. Mater. Res., 20(11), 617 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.11.617
  4. O. N. Hartley, R. Russell, K. C. Heasman, N. B., Mason and T. M. Bruton, in Proceedings of 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, May 2002) p. 118. DOI : 10.1109/PVSC.2002.1190470.
  5. Zs. Makaro, G. Battistig, Z. E. Horvath, J. Likonen and I. Barsony, Vacuum, 50(3-4), 481 (1998). https://doi.org/10.1016/S0042-207X(98)00083-9
  6. J. Jeong, A. Rohatgi, V. Yelundur, A. Ebong, M. D. Rosenblum and J. P. Kalejs, IEEE Trans. Electron Dev., 48(12), 2836 (2001). https://doi.org/10.1109/16.974713
  7. J. G. Fossum, IEEE Trans. Electron Dev., 24(4), 322 (1977). https://doi.org/10.1109/T-ED.1977.18735
  8. P. Lolgen, C. Leguijt, J. A. Eikelboom, R. A. Steeman, W. C. Sinke, L. A. Verhoef, P. F. A. Alkemade and E. Algra, in Proceedings of 23rd IEEE Photovoltaic Specialists Conference (Louisville, USA, May, 1993) p. 236. DOI : 10.1109/PVSC.1993.347046.
  9. S. Narasimha, A. Rohatgi and A. W. Weeber, IEEE Trans. Electron Dev., 46(7), 1363 (1999). https://doi.org/10.1109/16.772477
  10. S. Bowden, D. Kim, C. Honsberg and A. Rohatgi, in Proceedings of 23rd IEEE Photovoltaic Specialists Conference (Louisville, USA, May 1993) p. 410.
  11. R. R. King, R. A. Sinton and R. M. Swanson, IEEE Trans. Electron Dev., 37(2), 365 (1990). https://doi.org/10.1109/16.46368
  12. V. Meemongkolkiat, M. Hilali and A. Rohatgi, in Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, May 2003) p. 1467.
  13. R. Sinton, User Manual: WCT-100 Photoconductance Tool, Sinton Consulting, Green Circle Boulder, Colorado (2003).
  14. R. A. Sinton, A. Cuevas and M. Stuckings, in Proceedings of 25th IEEE Photovoltaic Specialists Conference (Washington, USA, May 1996) p. 457. DOI : 10.1109/PVSC.1996.564042.
  15. F. M. Roberts, E. L. G. Wilkinson, J. Mater. Sci., 6, 189 (1971). https://doi.org/10.1007/BF00550012