DOI QR코드

DOI QR Code

Growth and Characterization of GaN on Sapphire and Porous SWCNT Using Single Molecular Precursor

  • Sekar, P.V. Chandra (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lim, Hyun-Chul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Chang-Gyoun (Korea Research Institute of Chemical Technology) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2011.03.18
  • Accepted : 2011.04.13
  • Published : 2011.05.27

Abstract

Due to their novel properties, GaN based semiconductors and their nanostructures are promising components in a wide range of nanoscale device applications. In this work, the gallium nitride is deposited on c-axis oriented sapphire and porous SWCNT substrates by molecular beam epitaxy using a novel single source precursor of $Me_2Ga(N_3)NH_2C(CH_3)_3$ with ammonia as an additional source of nitrogen. The advantage of using a single molecular precursor is possible deposition at low substrate temperature with good crystal quality. The deposition is carried out in a substrate temperature range of 600-750$^{\circ}C$. The microstructural, structural, and optical properties of the samples were analyzed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and photoluminescence. The results show that substrate oriented columnar-like morphology is obtained on the sapphire substrate while sword-like GaN nanorods are obtained on porous SWCNT substrates with rough facets. The crystallinity and surface morphology of the deposited GaN were influenced significantly by deposition temperature and the nature of the substrate used. The growth mechanism of GaN on sapphire as well as porous SWCNT substrates is discussed briefly.

Keywords

References

  1. S. Nakamura, Y. Harada and M. Senoh, Appl. Phys. Lett., 58, 2021 (1991). https://doi.org/10.1063/1.105239
  2. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan and R. A. Stall, Appl. Phys. Lett., 67, 1435 (1995). https://doi.org/10.1063/1.114518
  3. F. A. Ponce and D. P. Bour, Nature, 386, 351 (1997). https://doi.org/10.1038/386351a0
  4. S. Nakamura and G. Fasol, The blue laser diode : GaN based light emitters and lasers, p.201-205, Springer, Berlin (1997).
  5. D. P. Bour, N. M. Nickel, C. G. Van de Walle, M. S. Kneissl, B. S. Krusor, P. Mei and N. M. Johnson, Appl. Phys. Lett., 76, 2182 (2000). https://doi.org/10.1063/1.126291
  6. A. Koo, F. Budde, B. J. Ruck, H. J. Trodahl, A. Bittar, A. Preston and A. Zeinert, J. Appl. Phys., 99, 034312 (2006). https://doi.org/10.1063/1.2170400
  7. M. M. Sung, C. G. Kim and Y. S. Kim, J. Vac. Sci. Tech., 22, 461 (2004). https://doi.org/10.1116/1.1666882
  8. A. Y. Timoshkin, H. F. Bettinger and H. F. Schaefer, J. Cryst. Growth, 222, 170 (2001). https://doi.org/10.1016/S0022-0248(00)00903-9
  9. D. M. Hoffmann, S. P. Rangarajan, S. D. Athavale, D. J. Economou, J. R. Liu, Z. Zheng and W. K. Chu, J. Vac. Sci. Tech., 14, 306 (1996). https://doi.org/10.1116/1.579893
  10. K. H. Kim, K. J. Lee, H. S. Kang, F. C. Yu, J. A. Kim, D. J. Kim, K. H. Baik, S. H. Yoo, C. G. Kim, Y. S. Kim, C. S. Kim, H. J. Kim and Y. E. Ihm, Phys. Status Solidi B, 241, 1458 (2004). https://doi.org/10.1002/pssb.200304556
  11. N. D. Hoa, N. V. Quy, Y. Cho and D. Kim, Sensor. Actuator. B Chem., 135, 656 (2009). https://doi.org/10.1016/j.snb.2008.10.041
  12. A. Devi, W. Rogge, A. Wohlfart, F. Hipler, H. W. Becker and R. A. Fischer, Chemical Vapor Deposition, 6, 245 (2000). https://doi.org/10.1002/1521-3862(200010)6:5<245::AID-CVDE245>3.0.CO;2-1
  13. J. H. Boo, S. B. Lee, K. S. Yu, M. M. Sung and Y. Kim, Surf. Coating. Tech., 131, 147 (2000). https://doi.org/10.1016/S0257-8972(00)00820-3
  14. J. Zhu, R. Yao, H. Song, Z. Fu, A. Yu. Kuznetsov and I. H. Lee, J. Vac. Sci. Tech., 26, 224 (2008). https://doi.org/10.1116/1.2835090
  15. S. A. Rushworth, J. R. Brown, D. J. Houlton, A. C. Jones, V. Roberts, J. S. Roberts and G. W. Critchlow, Adv. Mater. Optic. Electron., 6, 119 (1996). https://doi.org/10.1002/(SICI)1099-0712(199605)6:3<119::AID-AMO229>3.0.CO;2-7
  16. H. C. Lim, P. V. Chandrasekar, D. M. Chang, S. Y. Ahn, H. Jung and D. Kim, Kor. J. Mater. Res., 20, 199 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.4.199
  17. H. Harima, J. Phys. Condens. Matter., 14, R967 (2002). https://doi.org/10.1088/0953-8984/14/38/201
  18. W. H. Sun, S. T. Wang, J. C. Zhang, K. M. Chen, G. G. Qin, Y. Z. Tong, Z. J. Yang, G. Y. Zhang, Y. M. Pu, Q. L. Zhang, J. Li, J. Y. Lin and H. X. Jiang, J. Appl. Phys., 88, 5662 (2000). https://doi.org/10.1063/1.1290462
  19. D. C. Reynolds, D. C. Look, B. Jogai, J. E. Van Nostrand, R. Jones and J. Jenny, Solid State Comm., 106, 701 (1998). https://doi.org/10.1016/S0038-1098(98)00048-9