DOI QR코드

DOI QR Code

Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition

상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가

  • Baek, Chang-Woo (Department of Materials Science and Engineering, Myongji University) ;
  • Han, Gui-fang (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Hahn, Byung-Dong (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Yoon, Woon-Ha (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Choi, Jong-Jin (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Park, Dong-Soo (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Ryu, Jung-ho (Functional Ceramics Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Jeong, Dae-Yong (Department of Materials Science and Engineering, Myongji University)
  • 백창우 (명지대학교 신소재공학과) ;
  • 한귀팡 (재료연구소 기능성세라믹연구그룹) ;
  • 한병동 (재료연구소 기능성세라믹연구그룹) ;
  • 윤운하 (재료연구소 기능성세라믹연구그룹) ;
  • 최종진 (재료연구소 기능성세라믹연구그룹) ;
  • 박동수 (재료연구소 기능성세라믹연구그룹) ;
  • 류정호 (재료연구소 기능성세라믹연구그룹) ;
  • 정대용 (명지대학교 신소재공학과)
  • Received : 2011.02.28
  • Accepted : 2011.04.13
  • Published : 2011.05.27

Abstract

Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of $Ni_{1+x}Mn_{2-x}O_{4+{\delta}}$ (x = 0.05, 0, -0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between $25^{\circ}C$ and $85^{\circ}C$ without heat treatment. When the film was annealed at $600^{\circ}C$ 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at $600^{\circ}C$ for 1 h were 5.203, 5.95, and 4.772 $K{\Omega}{\cdot}cm$ and 351, 326, and 299 meV for $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$, $NiMn_2O_4$, and $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$, respectively. The annealing process induced insulating $Mn_2O_3$ in the Ni deficient $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$ suppressed the abnormal grain growth and changed $Mn^{3+}$ to $Mn^{4+}$, giving lower resistivity and activation energy.

Keywords

References

  1. S. Jagtap, S. Rane, S. Gosavi and D. Amalnerkar, J. Eur. Ceram. Soc., 28, 2501 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.03.027
  2. S. A. Kanade and V. Puri, Mater. Lett., 60, 1428 (2006). https://doi.org/10.1016/j.matlet.2005.11.042
  3. R. Jadhav, D. Kulkarni and V. Puri, J. Mater. Sci. Mater. Electron., 21 (5), 503 (2010). https://doi.org/10.1007/s10854-009-9946-8
  4. K. Park and D. Bang, J. Mater. Sci. Mater. Electron., 14(2), 81 (2003). https://doi.org/10.1023/A:1021900618988
  5. J. Huang, Y. Hao, H. Lin, D. Zhang, J. Song and D. Zhou, Mater. Sci. Eng. B, 99, 523 (2003). https://doi.org/10.1016/S0921-5107(02)00547-0
  6. N. P. Prasanth, J. M. Varghese, K. Prasad, B. Krishnan, A. Seema and K. R. Dayas, J Mater. Sci. Mater. Electron., 19, 1100 (2008). https://doi.org/10.1007/s10854-007-9475-2
  7. M. Lee and M. Yoo, Sensor. Actuator. Phys., 96, 97 (2002). https://doi.org/10.1016/S0924-4247(01)00769-5
  8. R. Schmidt, A. Basu and A. W. Brinkman, J. Eur. Ceram. Soc., 24, 1233 (2004). https://doi.org/10.1016/S0955-2219(03)00415-1
  9. M. Yoo and M. Lee, Mater. Trans., 43(5), 1065 (2002). https://doi.org/10.2320/matertrans.43.1065
  10. G. D. C. Csete de Gyorgyfalva and I. Reaney, J. Eur. Ceram. Soc., 21, 2145 (2001). https://doi.org/10.1016/S0955-2219(01)00190-X
  11. A. Veres, J. G. Noudem, O. Perez, S. Fourrez and G. Bailleul, Solid State Ionics, 178, 423 (2007). https://doi.org/10.1016/j.ssi.2007.01.028
  12. S. M. Savic, M. V. Nikolic, O. S. Aleksic, M. Slankamenac, M. Zivanov and P. M. Nikolic, Science of Sintering, 40, 27 (2008). https://doi.org/10.2298/SOS0801027S
  13. R. Schmidt, A. Basu, A. W. Brinkman, Z. Klusek and P. K. Datta, Appl. Phys. Lett., 86, 073501 (2005). https://doi.org/10.1063/1.1866643
  14. J. R. Yoon, J. G. Kim, J. Y. Kwon, H. Y. Lee and S. W. Lee, J. KIEEME, 13(6), 472 (2000).
  15. A. Kshirsagar, S. Rane, U. Mulik and D. Amalnerkar, Mater. Chem. Phys., 101, 492 (2007). https://doi.org/10.1016/j.matchemphys.2006.08.009
  16. H. Hosseini and B. Yasaei, Ceram. Int., 24, 543 (1998). https://doi.org/10.1016/S0272-8842(97)00054-0
  17. M. -J. Lee, T. -Y. Lim, S. -K. Kim, J. Hwang, J. -H. Kim and W. -S. Seo, Kor. J. Mater. Res., 20(12), 654 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.12.654
  18. J. Ryu, K. -Y. Kim, J. -J. Choi, B. -D. Hahn, W. -H. Yoon, B. -K. Lee, D. S. Park and C. Park, J. Am. Ceram. Soc., 92 (12), 3084 (2009). https://doi.org/10.1111/j.1551-2916.2009.03300.x
  19. J. Ryu, D. -S. Park, B. -D. Hahn, J. -J. Choi, W. -H. Yoon, K. Y. Kim and H. -S. Yun, Appl. Catal. B Environ., 83, 1 (2008). https://doi.org/10.1016/j.apcatb.2008.01.020
  20. B. -D. Hahn, D. -S. Park, J. -J. Choi, J. Ryu, W. -H. Yoon, J. -H. Choi, H. -E. Kim and S. -G. Kim, Surf. Coating. Tech., 205, 3112 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.029