DOI QR코드

DOI QR Code

Alteration in NCX-3 immunoreactivity within the gerbil hippocampus following spontaneous seizures

  • Park, Dae-Kyoon (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Park, Kyung-Ho (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Ko, Jeong-Sik (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Kim, Duk-Soo (Department of Anatomy, College of Medicine, Soonchunhyang University)
  • Received : 2010.11.08
  • Accepted : 2011.02.10
  • Published : 2011.05.31

Abstract

Although NCX-3 is highly expressed in the brain, the distribution of NCX-3 in the epileptic hippocampus is still controversial. Therefore, to assess the distribution and pattern of NCX-3 expression in epileptic hippocampus, we performed a comparative analysis of NCX-3 immunoreactivities in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. In SR gerbils, NCX-3 immunoreactivity was higher than pre-seizure SS gerbils, particularly in the pavalbumin (PV)-positive interneurons. Three h post-ictal, NCX-3 immunoreactivity in the SS gerbil hippocampus was markedly elevated to the level of SR gerbils. Six h post-ictal, the expression of NCX-3 was reduced to the level of pre-seizure SS gerbils. Therefore, the results of the present study suggest that down-regulation of NCX-3 expression in the SS gerbil hippo-campus may be involved in the hyperexcitability of SS gerbils due to an imbalance of intracellular $Na^+/Ca^{2+}$ homeostasis and $Ca^{2+}$ concentration.

Keywords

References

  1. Blaustein, M. P. and Lederer, W. J. (1999) Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763-854. https://doi.org/10.1152/physrev.1999.79.3.763
  2. Hinata, M., Yamamura, H., Li, L., Watanabe, Y., Watano, T., Imaizumi, Y. and Kimura, J. (2002) Stoichiometry of $Na^+-Ca2^+$ exchange is 3:1 in guinea-pig ventricular myocytes. J. Physiol. 545, 453-461. https://doi.org/10.1113/jphysiol.2002.025866
  3. Juhaszova, M., Church, P. J., Blaustein, M. P. and Stanley, E. F. (2000) Location of calcium transporters at presynaptic terminals. Eur. J. Neurosci. 12, 839-846. https://doi.org/10.1046/j.1460-9568.2000.00974.x
  4. Reuter, H. and Porzig, H. (1995) Localization and functional significance of the $Na^+/Ca2^+$ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15, 1077-1084. https://doi.org/10.1016/0896-6273(95)90096-9
  5. Buckmaster, P. S., Tam, E. and Schwartzkroin, P. A. (1996) Electrophysiological correlates of seizure sensitivity in the dentate gyrus of epileptic juvenile and adult gerbils. J. Neurophysiol. 76, 2169-2180. https://doi.org/10.1152/jn.1996.76.4.2169
  6. Buckmaster, P. S. and Wong, E. H. (2002) Evoked responses of the dentate gyrus during seizures in developing gerbils with inherited epilepsy. J. Neurophysiol. 88, 783- 793. https://doi.org/10.1152/jn.2002.88.2.783
  7. Buchhalter, J. R. (1993) Animal models of inherited epilepsy. Epilepsia 34, S31-S41. https://doi.org/10.1111/j.1528-1157.1993.tb05921.x
  8. Peterson, G. M. and Ribak, C. E. (1987) Hippocampus of the seizure-sensitive gerbil is a specific site for anatomical changes in the GABAergic system. J. Comp. Neurol. 261, 405-422. https://doi.org/10.1002/cne.902610306
  9. Kang, T. C., Kim, D. S., Kwak, S. E., Kim, J. E., Kim, D. W., Kang, J. H., Won, M. H., Kwon, O. S. and Choi, S. Y. (2005) Valproic acid reduces enhanced vesicular glutamate transporter immunoreactivities in the dentate gyrus of the seizure prone gerbil. Neuropharmacology 49, 912-921. https://doi.org/10.1016/j.neuropharm.2005.08.007
  10. Pal, S., Limbrick, D. D. Jr., Rafiq, A. and DeLorenzo, R. J. (2000) Induction of spontaneous recurrent epileptiform discharges causes long-term changes in intracellular calcium homeostatic mechanisms. Cell Calcium 28, 181- 193. https://doi.org/10.1054/ceca.2000.0146
  11. Kang, T. C., An, S. J., Park, S. K., Hwang, I. K., Bae, J. G. and Won, M. H. (2003) The evidence for GABAB receptor- mediated regulation of acid-base balance: involvement of $Na^+/H^+$ exchanger and $Na^+/HCO_3$-cotransporter. Brain Res. Mol. Brain Res. 114, 86-90. https://doi.org/10.1016/S0169-328X(03)00133-5
  12. Buckmaster, P. A. (2005) Inherited epilepsy in Mongolian gerbils: Models of seizures and epilepsy. Schwartzkroin, P. A. (ed.), pp. 273-294, Academic press, Elsevier, USA.
  13. Papa, M., Canitano, A., Boscia, F., Castaldo, P., Sellitti, S., Porzig, H., Tagialatela, M. and Annunziato, L. (2003) Differential expression of the Na+-Ca2+ exchanger transcripts and protein in rat brain regions. J. Comp. Neurol. 461, 31-48. https://doi.org/10.1002/cne.10665
  14. Canitano, A., Papa, M., Boscia, F., Castaldo, P., Sellitti, S., Taglialatela, M. and Annunziato, L. (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann. N. Y. Acad. Sci. 976, 394- 404.
  15. Parsons, J. T., Churn, S. B., Kochan, L. D. and DeLorenzo, R. J. (2000) Pilocarpine-induced status epilepticus causes N-methyl-D-aspartate receptor-dependent inhibition of microsomal $Mg2^+/Ca2^+$ ATPase- mediated Ca(2+) uptake. J. Neurochem. 75, 1209-1218.
  16. Paul, L. A., Fried, I., Watanabe, K., Forsythe, A. B. and Schibel, A. B. (1981) Structural correlates of seizure behavior in the Mongolian gerbil. Science 213, 924-926. https://doi.org/10.1126/science.7256289
  17. Raza, M., Pal, S., Rafiq, A. and DeLorenzo, R. J. (2001) Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res. 903, 1-12. https://doi.org/10.1016/S0006-8993(01)02127-8
  18. Gorter, J. A., Borgdorff, A. J., van Vliet, E. A., Lopes da Silva, F. H. and Wadman, W. J. (2002) Differential and long-lasting alterations of high-voltage activated calcium currents in CA1 and dentate granule neurons after status epilepticus. Eur. J. Neurosci. 16, 701-712. https://doi.org/10.1046/j.1460-9568.2002.02108.x
  19. Baimbridge, K. G., Mody, I. and Miller, J. J. (1985) Reduction of rat hippocampal calcium-binding protein following commissural, amygdala, septal, perforant path, and olfactory bulb kindling. Epilepsia 26, 460-465. https://doi.org/10.1111/j.1528-1157.1985.tb05681.x
  20. Nagerl, U. V., Mody, I., Jeub, M., Lie, A. A., Elger, C. E. and Beck, H. (2000) Surviving granule cells of the sclerotic human hippocampus have reduced $Ca2^+$ influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J. Neurosci. 20, 1831-1836.
  21. Keele, N. B., Zinebi, F., Neugebauer, V. and Shinnick- Gallagher, P. (2000) Epileptogenesis up-regulates metabotropic glutamate receptor activation of sodium-calcium exchange current in the amygdala. J. Neurophysiol. 83, 2458-2462. https://doi.org/10.1152/jn.2000.83.4.2458
  22. Garcia, M. L., Murray, K. D., Garcia, V. B., Strehler, E. E. and Isackson, P. J. (1997) Seizure-induced alterations of plasma membrane calcium ATPase isoforms 1, 2 and 3 mRNA and protein in rat hippocampus. Mol. Brain Res. 45, 230-238. https://doi.org/10.1016/S0169-328X(96)00253-7
  23. Kang, T. C., Park, S. K., Hwang, I. K., An, S. J. and Won, M. H. (2004a) GABA(B) receptor-mediated regulation of P2X7 receptor expression in the gerbil hippocampus. Brain Res. Mol. Brain Res. 121, 12-18. https://doi.org/10.1016/j.molbrainres.2003.10.020
  24. Kang, T. C., Park, S. K., Hwang, I. K., An, S. J. and Won, M. H. (2004b) Altered Na+-K+ ATPase immunoreactivity within GABAergic neurons in the gerbil hippocampal complex induced by spontaneous seizure and vigabatrin treatment. Neurochem. Int. 45, 179-187. https://doi.org/10.1016/j.neuint.2003.10.008
  25. Kim, D. S., Yoo, K. Y., Hwang, I. K., Jung, J. Y., Won, M. H., Seo, J. H. and Kang, T. C. (2005) Elevated substance P (NK-1) receptor immunoreactivity in the cerebellum of seizure prone gerbil. Neuropeptides 39, 9-14. https://doi.org/10.1016/j.npep.2004.09.009
  26. Kim, D. S., Kim, J. E., Kwak, S. E., Won, M. H. and Kang, T. C. (2007a) Seizure activity affects neuroglial Kv1 channel immunoreactivities in the gerbil hippocampus. Brain Res. 172, 172-187.
  27. Saito, R., Kaneko, E., Tanaka, Y., Honda, K., Matsuda, T., Baba, A., Komuro, I., Kita, S., Iwamoto, T. and Takano, Y. (2009) Involvement of Na+/Ca2+ exchanger in pentylenetetrazol- induced convulsion by use of Na+/Ca2+ exchanger knockout mice. Biol. Pharm. Bull. 32, 1928-1930. https://doi.org/10.1248/bpb.32.1928
  28. Baker, P. F. and McNaughton, P. A. (1976) Kinetics and energetic of calcium efflux from intact squid giant axons. J. Physiol. 259, 103-144. https://doi.org/10.1113/jphysiol.1976.sp011457
  29. Markram, H., Helm, P. J. and Sakmann, B. (1995) Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. 485, 1-20. https://doi.org/10.1113/jphysiol.1995.sp020708
  30. Spruston, N., Schiller, Y., Stuart, G. and Sakmann, B. (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297-300. https://doi.org/10.1126/science.7716524
  31. Kawaguchi, Y. and Kondo, S. (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneurons types in the rat frontal cortex. J. Neurocytol. 31, 277-287. https://doi.org/10.1023/A:1024126110356
  32. Kim, D. S., Kim, J. E., Kwak, S. E., Choi, H. C., Song, H. K., Kim, Y. I., Choi, S. Y. and Kang, T. C. (2007b) Upregulated astroglial TWIK-related acid-sensitive $K^+$ channel- 1 (TASK-1) in the hippocampus of seizure-sensitive gerbils: a target of anti-epileptic drugs. Brain Res. 1185, 346-358. https://doi.org/10.1016/j.brainres.2007.09.043
  33. Kim, J. E., Kwak, S. E. and Kang, T. C. (2009) Upregulated TWIK-related acid-sensitive K+ channel-2 in neurons and perivascular astrocytes in the hippocampus of experimental temporal lobe epilepsy. Epilepsia 50, 654-663. https://doi.org/10.1111/j.1528-1167.2008.01957.x

Cited by

  1. Probing the role of the sodium/calcium exchanger in pentylenetetrazole-induced generalized seizures in rats vol.90, 2013, https://doi.org/10.1016/j.brainresbull.2012.09.007
  2. Altered expression of adrenocorticotropic hormone in the epileptic gerbil hippocampus following spontaneous seizure vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.149
  3. KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment vol.24, pp.1, 2017, https://doi.org/10.1186/s12929-017-0335-y
  4. Alterations in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus vol.45, pp.11, 2012, https://doi.org/10.5483/BMBRep.2012.45.11.091
  5. Amiloride and SN-6 Suppress Audiogenic Seizure Susceptibility in Genetically Epilepsy-Prone Rats vol.20, pp.9, 2014, https://doi.org/10.1111/cns.12296
  6. Decreased expression of hippocampal Na+/Ca2+ exchanger isoform-1 by pentylenetetrazole kindling in mice vol.115, 2015, https://doi.org/10.1016/j.eplepsyres.2015.06.002