DOI QR코드

DOI QR Code

Evaluation of Growth, Carcass, Immune Response and Stress Parameters in Naked Neck Chicken and Their Normal Siblings under Tropical Winter and Summer Temperatures

  • Rajkumar, U. (Project Directorate on Poultry) ;
  • Reddy, M.R. (Project Directorate on Poultry) ;
  • Rao, S.V. Rama (Project Directorate on Poultry) ;
  • Radhika, K. (Project Directorate on Poultry) ;
  • Shanmugam, M. (Project Directorate on Poultry)
  • 투고 : 2010.08.26
  • 심사 : 2010.11.04
  • 발행 : 2011.04.01

초록

The performance of naked neck and normal chicken was evaluated with respect to growth, carcass, immune, biochemical and stress parameters under winter and summer seasons to assess the suitability of naked neck birds under high temperatures in the global scenario of climate change. The growth performance was significantly ($p{\leq}0.05$) higher in naked neck chicken in the summer season. The dressing percentage was significantly ($p{\leq}0.05$) higher in naked neck birds in both winter and summer season because of reduced plumage. The thigh, giblet and feather proportion significantly ($p{\leq}0.05$) varied between naked neck and normal chickens in summer season. The humeral immune response to sheep red blood cells (SRBC), Newcastle disease vaccine (NDV) and cutaneous basophil hypersensitivity (CBH) did not show any significant differences among the chicken groups. The protein and cholesterol concentration observed was within the normal ranges. The total cholesterol levels in plasma were significantly ($p{\leq}0.05$) lower in naked neck birds in both the seasons. H:L ratio was significantly ($p{\leq}0.05$) lower in summer season indicating less stress in naked neck chicken. Basophil and eosinophil concentration was significantly ($p{\leq}0.05$) higher in normal chicken in summer. The lipid peroxidation was higher in full feathered birds under summer stress. The enzyme glutathione reductase (GR) levels were significantly higher during the summer and varied significantly ($p{\leq}0.05$) between the normal and naked neck chicken in both seasons. The results indicated that the naked neck birds performed significantly better at high ambient temperatures with respect to growth, carcass and biochemical parameters. It was concluded that the ability of the naked neck chicken to adapt to high temperatures foresees a viable option for the biological mitigation of climate change.

키워드

참고문헌

  1. Almeida, A. M. and U. Zuber. 2010. The effect of naked neck genotype (NaNa), feeding and outdoor rearing of on growth and carcass characteristics of free range broilers in hot climate. Trop. Anim. Health Prod. 42:99-107. https://doi.org/10.1007/s11250-009-9391-y
  2. Al Murrani, W. K., I. K. Al Raw and N. M. Roaf. 2002. Genetic resistance to salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of the heterophil/lymphocyte ratio. Br. Poult. Sci. 43:501-507. https://doi.org/10.1080/0007166022000004408
  3. Altan, O., A. Pabuccuoglu, A. Altan, S. Konyalioglu and H. Bayraktar. 2003. Effect of heat stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 44:545-550. https://doi.org/10.1080/00071660310001618334
  4. Altan, O., A. Altan, I. Oguz, A. Pabuccuoglu and S. Konyalioglu. 2000. Effects of heat stress on growth, some blood variables and lipid oxidation in broilers exposed to high temperatures at an early age. Br. Poult. Sci. 41:498-493.
  5. Cahaner, A., N. Deeb and M. Gutman. 1993. Effects of the plumage-reducing naked neck (Na) gene on the performance of fast-growing broilers at normal and high ambient temperature. Poult. Sci. 72:767-775. https://doi.org/10.3382/ps.0720767
  6. Cahaner, A., Y. Pinchosov, Y. Nir and Z. Litzan. 1995. Effects of dietary protein under high ambient temperature on body weight gain, breast meat yield and abdominal fat deposition of broilers stocking differing in growth rate and fatness. Poult. Sci. 74:968-975. https://doi.org/10.3382/ps.0740968
  7. Cohen, G., D. Dembiec and J. Marcus. 1970. Measurement of catalase in tissue extract. Anal. Biochem. 34:30-38. https://doi.org/10.1016/0003-2697(70)90083-7
  8. Davison, T. F., L. G. Rowel and H. K. Parmentier. 1983. Effects of dietary corticosterone on peripheral blood lymphocytes and granulocyte population in immature domestic fowl. Res. Vet. Sci. 34:236-239.
  9. El Safty, S. A., U. M. Ali and M. M. Fathi. 2005. Immnological parameters and laying performance of naked neck and normally feathered genotypes of chicken under winter conditions of Egypt. Proc. 4th European Poult. Genet. Symp., Croatia, p. 18.
  10. Fathi, M. M., A. H. El-Attar, U. M. Ali and A. Nazmi. 2008. Effect of the neck neck gene on carcass composition and immune competence in chicken. Br. Poult. Sci. 49:103-110. https://doi.org/10.1080/00071660802005137
  11. Freeman, B. M. 1987. The stress syndrome. World's Poult. Sci. J. 43:15-19. https://doi.org/10.1079/WPS19870002
  12. Galal, A. and M. M. Fathi. 2001. Improving carcass yield of chicken by introducing naked neck and frizzle genes under hot prevailing conditions. Egyptian Poult. Sci. 21:339-362.
  13. Horst, P. 1987. Animal genetic resources and potential for resource development in the tropics with special reference to Malaysia. Mal. Appl. Biol. 16:13-22.
  14. Inter Governmental Panel on Climate Change (IPCC). 2001. Working Group II. Impacts, adaptations and vulnerability. Available at www:grida.no/climate/ipcc_tar/wg2/005.html.
  15. Lin, H., H. C. Jiao, J. Byse and E. Decuypre. 2006. Strategies for preventing heat stress in poultry. World's Poult. Sci. J. 62:71-86. https://doi.org/10.1079/WPS200585
  16. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the Folin-Phenol reagent. J. Biol. Chem. 193:265-275.
  17. Macleod, M. G. and P. M. Hocking. 1993. Thermoregulation at high ambient temperatures in genetically fat lean broiler hens fed ad libitum or on controlled feeding regime. Br. Poult. Sci. 34:589-596. https://doi.org/10.1080/00071669308417614
  18. Magothe, T. M., W. B. Muhuyi and A. K. Kahi. 2010. Influence of major genes for crested-head, frizzle-feather and naked neck on body weights and growth patterns of indigenous chickens reared intensively in Kenya. Trop. Anim. Health Prod. 42:173-183. https://doi.org/10.1007/s11250-009-9403-y
  19. Maxwell, M. H., G. M. Robertson, M. A. Mitchell and A. J. Carlisle. 1992. The fine structure of broiler chicken blood cells, with particular reference to basophils after severe heat stress. Comp. Hem. Int. 2:190-200. https://doi.org/10.1007/BF00216094
  20. Mc Cord, J. M. 2000. The evaluation of radicals and oxidative stress. Am. J. Med. 108:652-659. https://doi.org/10.1016/S0002-9343(00)00412-5
  21. Merat, P. 1986. Potential usefulness of the Na (naked neck) gene in poultry production. World's Poult. Sci. J. 42:124-142. https://doi.org/10.1079/WPS19860010
  22. Merat, P. 1990. Major genes in fowls (Gallus gallus): genes other than those affecting size. Anim. Prod. 3:355-368.
  23. Miranda, K. M., M. G. Espey and D. A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 5:62-71. https://doi.org/10.1006/niox.2000.0319
  24. Paglia, D. E. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidise. Lab. Clin. Med. 70:158-169.
  25. Patra, B. N., R. K. S. Bais, R. B. Prasad and B. P. Singh. 2002. Performance of naked neck versus normally feathered coloured broilers for growth, carcass traits and blood biochemical parameters in tropical climate. Asian-Aust. J. Anim. Sci. 15:1776-1783. https://doi.org/10.5713/ajas.2002.1776
  26. Patra, B. N., R. K. S. Bais, D. Sharma, B. P. Singh, R. B. Prasad and R. Bhushan, 2004. Immunocompetence status of white plumage naked neck versus normally feathered broilers in tropical climate. Asian-Aust. J. Anim. Sci. 17:560-563. https://doi.org/10.5713/ajas.2004.560
  27. Placer, Z. A., L. L. Cushman and B. C. Johnoson. 1966. Estimation of product of lipid peroxidation (melanyl dialdehyde) in biochemical systems. Anal. Biochem. 16:359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  28. Rajkumar, U., B. L. N. Reddy, K. S. Rajaravindra, M. Niranjan, T. K. Bhattacharya, R. N. Chatterjee, A. K. Panda, M. R. Reddy and R. P. Sharma. 2010a. Effect of Naked neck gene on Immune competence, Serum biochemical and Carcass traits in chicken under tropical climate. Asian-Aust. J. Anim. Sci. 23:867-872. https://doi.org/10.5713/ajas.2010.90548
  29. Rajkumar, U., K. S. Rajaravindra, M. Niranjan, B. L. N. Reddy, T. K. Bhattacharya, R. N. Chatterjee and R. P. Sharma. 2010b. Evaluation of Naked neck broiler genotypes under tropical environment. Indian J. Anim. Sci. 80:463-466.
  30. Raju, M. V. L. N., G. Shyam Sunder, M. M. Chawak, S. V. Rama Rao and V. R. Sadagopan. 2004. Response of naked neck (Nana) and normal (nana) broilers chickens to dietary energy levels in a subtropical climate. Br. Poult. Sci. 45:186-193. https://doi.org/10.1080/00071660410001715786
  31. Reddy, B. L. N., R. P. Sharma, M. Niranjan and R. N. Chatterjee. 2008. Evaluation of performance of Naked neck (Na/Na,Na/na) and dwarf (dw/dw, dw/-) gene lines under low selection intensity. Indian J. Anim. Sci. 78:975-79.
  32. Reddy, M. R., N. K. Praharaj, S. V. Rama Rao, B. L. N. Reddy and G. Shyamsunder. 1998. Immunecompetence and growth performance of naked neck and full feathered broilers fed different nutrient regimes. In Procedings vol. II, 10th European conference, Jerusalem, Israel.
  33. SAS institute. 2009. User's Guide Version, 9.2, 2002-2009, SAS institute Inc., Cary, NC, USA.
  34. Singh, B., B. P. Singh, S. Singh, D. Chaudhary and C. Malik. 1998. Naked neck; a noble gene for broiler production in tropical climate. J. Appl. Anim. Res. 13:37-48. https://doi.org/10.1080/09712119.1998.9706671
  35. Singh, C. V., D. Kumar and Y. P. Singh. 2001. Potential usefulness of the plumage reducing naked neck (Na) gene in poultry production at normal and high ambient temperatures. World's Poult. Sci. J. 57:139-156. https://doi.org/10.1079/WPS20010011
  36. Sturkie, P. D. 1946. Tolerance of adult chickens to hypothermia. Am. J. Physiol. 147:531-536.
  37. Thayer, S. G. and C. W. Beard. 1998. Serologic procedures; In: A laboratory manual for the isolation and identification of avian pathogens. 4th edition. pp. 248-254.
  38. Weaver Jr., W. D. 2002. Poultry housing. In: Commercial chicken meat and egg production, 5th edition, (Ed. Donald D. Bell and William D. Weaver Jr.). pp. 102-103.
  39. Wegman, G. and O. Smithies. 1966. A simple hemaggltination system requiring small amounts of red cells and antibodies. Transfusion 6:67. https://doi.org/10.1111/j.1537-2995.1966.tb04696.x
  40. Yahav, S. 2009. Alleviating heat stress in domestic fowl: different strategies. World's Poult. Sci. J. 65:719-732. https://doi.org/10.1017/S004393390900049X
  41. Yahav, S., D. Luger, A. Cahaner, M. Dotan, M. Rusal and S. Hurwitz. 1998. Thermoregulation in naked neck chicken subjected to different ambient temperature. Br. Poult. Sci. 39:133-138. https://doi.org/10.1080/00071669889510
  42. Zulkifli, I., R. T. Dass and M. T. Che Norma. 1999. The heat stress effects on physiology and fear related behaviour in red jungle fowl and domestic fowl. Canadian J. Anim. Sci. 79:165-170. https://doi.org/10.4141/A98-022

피인용 문헌

  1. Characterization of primary immune response in Ghanaian local, Sasso T-44 and broiler chickens to sheep red blood cell antigens vol.53, pp.2078-6344, 2013, https://doi.org/10.1017/S2078633613000258
  2. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: I. Growth performance and egg production vol.69, pp.04, 2013, https://doi.org/10.1017/S0043933913000834
  3. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: II. Blood parameters and immunity vol.70, pp.01, 2014, https://doi.org/10.1017/S0043933914000142
  4. Concentration in Two Broiler Populations vol.26, pp.4, 2015, https://doi.org/10.1080/10495398.2015.1022183
  5. Empirical evidence of cold stress induced cell mediated and humoral immune response in common myna (Sturnus tristis) vol.59, pp.11, 2015, https://doi.org/10.1007/s00484-015-0967-0
  6. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken pp.1466-1268, 2018, https://doi.org/10.1007/s12192-017-0837-2
  7. Ameliorative measures to counter heat stress in poultry vol.74, pp.01, 2018, https://doi.org/10.1017/S0043933917001003
  8. Taurine Reduces Heat Stress by Regulating the Expression of Heat Shock Proteins in Broilers Exposed to Chronic Heat vol.20, pp.3, 2018, https://doi.org/10.1590/1806-9061-2017-0712
  9. Phenotypic Characterization of Indian Naked Neck Chicken Under Tropical Climatic Conditions vol.10, pp.10, 2015, https://doi.org/10.3923/ajava.2015.527.536
  10. Comparative evaluation of carcass traits and meat quality in native Aseel chickens and commercial broilers vol.57, pp.3, 2011, https://doi.org/10.1080/00071668.2016.1162282
  11. Immunocompetence Profile of Saudi Native Chickens Compared to Exotic Breeds under High Environmental Temperature vol.15, pp.7, 2011, https://doi.org/10.3923/ijps.2016.287.292
  12. Effect of increased incubation temperature on Hsp 90 and 60 gene expressions in coloured broiler chickens vol.45, pp.1, 2011, https://doi.org/10.1080/09712119.2016.1174128
  13. Small Scale Poultry Farmers’ Choice of Adaption Strategies to Climate Change in Ogun State, Nigeria vol.40, pp.335, 2018, https://doi.org/10.2478/plua-2018-0009
  14. Hepatic expression responses of DNA methyltransferases, heat shock proteins, antioxidant enzymes, and NADPH 4 to early life thermal conditioning in broiler chickens vol.20, pp.1, 2011, https://doi.org/10.1080/1828051x.2021.1890645
  15. Effects of ND vaccination combined LPS on growth performance, antioxidant performance and lipid metabolism of broiler vol.135, pp.None, 2011, https://doi.org/10.1016/j.rvsc.2020.10.007
  16. Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken vol.11, pp.6, 2011, https://doi.org/10.3390/ani11061575
  17. The genetic basis and robustness of naked neck mutation in chicken vol.53, pp.1, 2011, https://doi.org/10.1007/s11250-020-02505-1
  18. Effect of prenatal ambient temperature on the performance physiological parameters, and oxidative metabolism of Japanese quail (Coturnix coturnix japonica) layers exposed to heat stress during growth vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-89306-0