DOI QR코드

DOI QR Code

Thermal Behaviors and Reaction Characteristics of an Integrated Reactor with Catalytic Combustion-Reforming According to Operation Conditions

운전조건 변경에 따른 통합형 촉매연소-개질반응기의 열적 거동 및 반응 특성

  • 강태규 (한양대학교 기계공학과) ;
  • 이상민 (한국기계연구원 신재생청정시스템 연구실) ;
  • 안국영 (한국기계연구원 신재생청정시스템 연구실) ;
  • 김용모 (한양대학교 기계공학과)
  • Received : 2010.06.07
  • Accepted : 2011.03.28
  • Published : 2011.06.01

Abstract

Off-gases emitted from the anode of a molten carbonate fuel cell (MCFC) at high temperatures for power generation are used as fuel in catalytic combustion. The heat generated in the catalytic combustor is utilized as the heat for the endothermic reaction required for steam reforming. Among the various operational conditions of the integrated reactor, we varied the inlet gas compositions of the catalytic combustor according to fuel utilization in the MCFC and the ratio of steam to carbon in the reformer. Subsequently, the thermal behaviors and reaction characteristics of the integrated reactor were investigated experimentally. The fundamental data from this experimental study will be useful for the design and fabrication of a more practical integrated reactor in the future.

고온 발전용 연료전지인 MCFC의 연료극에서 방출되는 미반응 가스를 촉매연소의 열원으로 사용하고, 촉매연소 반응에 의해 발생한 열을 개질 반응에 필요한 공급열로 이용하는 통합형 촉매연소-개질 반응기에 있어서 MCFC의 운전 조건 변경에 따른 반응기의 열적 거동과 반응 특성을 실험적으로 연구하였다. 특히, 연료극에서 연료 이용률을 변동될 때 슬립가스의 조성이 바뀌는 것을 고려하여 촉매연소측에 공급해줄 혼합가스의 조성을 실험조건으로 설정하였다. 또한 개질측에서는 S/C(수증기/탄소)의 비를 운전조건의 변동 조건으로 설정하였다. 실험적으로 얻어진 데이터는 보다 현실적인 통합형 촉매연소-개질반응기를 설계하고 제작하는데 필요한 기본 자료로 활용될 수 있을 것이다.

Keywords

References

  1. Benjamin T. S., Matthias D. and Olaf, D., 2009, "Steam Reforming of Methane, Ethane, Propane, Butane, and Natural Gas over a Rhodium-Based Catalyst," Catalysis Today, Vol. 142, pp. 42-51. https://doi.org/10.1016/j.cattod.2009.01.008
  2. Lee, S. D., Hwang, I. C., Lee, B. G., Seo, I. S. Lim, T. H. and Hong, S. A., 2000, "The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell," Journal of the Korean Institute of Chemical Engineers, Vol. 38, No. 5, pp. 719-724.
  3. Park, J. G., Lee, S. H., Lim, S. K. and Bae, J. M., 2009, "Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane," Trans of the KSME(B), Vol. 33, No. 1. pp. 60-67 https://doi.org/10.3795/KSME-B.2009.33.1.60
  4. KOGAS, 2002, "Synthesis of the Hydrogen from Natural Gas," Final Research Report, pp. 16-25.
  5. Williams, M. C., Strakey, J. P. and Singhal, S. C., 2004, "U.S. Distributed Generation Fuel Cell Program," Joural of Power Sources, Vol. 131, pp. 79-85. https://doi.org/10.1016/j.jpowsour.2004.01.021
  6. Ghang, T. G., Yu, S. S., Kim, Y. M. and Ahn, K. Y., 2010, "Experimental Study of Steam Reforming Assisted by Catalytic Combustion in the Concentric Annular Reactor," Trans of the KSME(B), Vol. 34, No. 4. pp. 375-381. https://doi.org/10.3795/KSME-B.2010.34.4.375
  7. Liu, X. and Jensen, M. K., 2001, "Geometry Effects on Turbulent Flow and Heat Transfer in Internally Inned Tubes," Trans. ASME, J. of Heat Transfer, Vol. 123, pp. 1035-1044. https://doi.org/10.1115/1.1409267
  8. Xu, J. and Froment, G. F., 1989, "Methan Steam Reforming, Mathanation and Water-Gas Shift-1," AIchE Journal, Vol. 35, No. 1, pp. 88-96 https://doi.org/10.1002/aic.690350109
  9. Hayes, R. E. and Kolaczkowski, S. T., 1997, "Introduction to Catalytic Combustion," pp. 41-45.

Cited by

  1. An Experimental Study on the Performances of a Coupled Reactor with Catalytic Combustion and Steam Reforming for SOFC and MCFC vol.25, pp.4, 2014, https://doi.org/10.7316/KHNES.2014.25.4.364