DOI QR코드

DOI QR Code

Mesocosm as a Scientific Tool for Marine Science: Focused on the Soft-bottom Environment

해양과학에서 mesocosm의 적용 사례 연구: 연성저질환경연구를 위한 도구

  • Received : 2011.03.03
  • Accepted : 2011.03.21
  • Published : 2011.05.25

Abstract

This review has dealt with definition, size, history, and status of mesocosm, and also discussed several problems and trouble shootings related to the building of mesocosm, and finally will suggest the future directions of this scientific tool. Due to the restriction of the space, the discussion mainly focused on "the mesocosm building for the soft-bottom ecosystem". The mesocosm is defined as "medium-sized, self-sustaining, and man-controllable ecosystem". This type of studies has already initiated since 1960, but nowadays it expands to the diverse fields of science and technologies, such as toxicology, limnology, environmental sciences and engineering, and even geochemistry. As a scientific tool, the mesocosm requires following aspects; replicability, repeatability, and ecological realism or accuracy. Several technical problems have to be solved for the perfect building of mesocosm. They are known as scaling, composition of seawater/sediment, light intensity, turbulence, hydraulic residence time, and top predator. These trouble shootings are provided at the discussion in detail. In the context, I expect two promising directions in the future; 1. Objectivity based on the diverse statistical methodologies, 2. "Living ecosystem modelling" coordinated with the mathematical modelling. With these, the mesocosm will be more powerful tool for the scientists and engineers to investigate the chemical and the ecological responses to the toxic materials and global climate changes.

본 연구는 mesocosm의 정의, 규모, 연구사례, 국내 외 연구동향, mesocosm 조성 시 일반적인 문제점, 해결방안을 거론하고, 끝으로 향후 발전방향을 제시하였다. 지면의 제약 때문에 주로 연성저질생태계(soft-bottom ecosystem)를 위한 mesocosm의 조성에 관련된 내용에 중점을 두었다. Mesocosm이란 규모적인 측면에서 "중형(1~1000 $m^3$)규모이며, 외부에서 먹이 공급 없이 스스로 유지가 가능하며, 환경의 일부 조건을 인위적으로 조절 가능한 인공생태계"를 말한다. 이러한 연구는 1960년대 중반부터 해양/담수생태계, 특히 해양식물플랑크톤이 주 연구 대상이었으나, 점차 확대되어, 최근에는 독성학, 육수학, 환경학, 환경공학, 지구화학 등 다양한 분야에서 흔히 사용하는 도구가 되었다. 과학적인 도구의 하나로서 mesocosm은 기본적으로, 1. 재현성(replicability), 2. 반복성(repeatability), 그리고 3.생태학적 현실성(ecological realism or accuracy)이 구비되어야 한다. 여기에 구체적으로 필요한 규모(scaling), 퇴적물과 해수의 조성, 광량, 난류(亂流), 물 교환율, 포식자 등 기술적인 문제에 대한 해결책을 상세히 언급하였다. Mesocosm이라는 과학적인 도구의 미래 발전 방향은 1. 다양한 통계기법을 통한 객관성의 확보, 2. 수치모델분야와 상호 보완하여 "생태계의 살아 움직이는 모델"로서 보다 더 광범위한 적용이 될 것이다. 앞으로 독성물질에 대한 생태계의 반응 및 독성물질의 거동과 지구온난화에 대한 생태계 및 지구환경의 반응 등을 예측하는데 mesocosm은 매우 유용한 도구가 될 것으로 확신한다.

Keywords

References

  1. 김백호, 정승원, 서종근, 서미연, 한명수, 2005, "살조세균 적용이 식물플랑크톤과 조류독소 분포에 미치는 영향", 한국육수학회지, 제38권, 261-270.
  2. 김선주, 장풍국, 장민철, 이효정, 신경순, 이택견, 장만, 2001, "인공생태계(mesocosm)를 이용하여 질산염 공급에 따른 식물 플랑크톤의 변화 연구", 한국해양학회 추계학술발표대회 요약집, pp. 97.
  3. 김영태, 정용훈, 채윤주, 이충원, 김소영, 최강원, 양재삼, 2006, "메조코즘을 이용한 갯벌의 담수화과정 중 수질 변화", 한국해양학회지(바다), 제9권, 49-67.
  4. 김웅서, 2001, "해양생태계 연구를 위한 폐쇄생태계의 활용", 한국생물학회지, 제19권, 183-194.
  5. 김호섭, 박정환, 공동수, 황순진, 2004, "참재첩을 이용한 부영양호의 수질개선", 한국육수학회지, 제37권, 332-343.
  6. 류성훈, 이인철, 2010, "해양준설토를 이용한 메조코즘 조성", 한국해양과학기술협의회 공동학술대회 초록집, 3086-3090.
  7. 손장원, 윤충경, 김형철, 함종화, 2009, "Mesocosm을 이용한 습지에서의 인 거동 분석", 한국육수학회지, 제42권, 1-8.
  8. 지광희, 정용훈, 김현수, 양재삼, 2009, "담수화로 인한 퇴적물 내 입자성 인의 거동에 관한 실험적 연구", 한국해양환경공학회지, 제12권, 84-90.
  9. 한국해양과학기술진흥원(KIMST), 2009, 연안갯벌의 담수화등에 의한 환경변화조사 및 대응기술 개발: mesocosm을 이용한 현장적용기술 개발, 1차년도 보고서.
  10. 한국해양과학기술진흥원(KIMST), 2010, 연안갯벌의 담수화등에 의한 환경변화조사 및 대응기술 개발: mesocosm을 이용한 현장적용기술 개발, 2차년도 보고서.
  11. 한명수, 이경, 유광일, 1995, "철원 북방 DMZ내의 중영양호 토교저수지의 생태학적 연구 I. 넷트로 제작된 mesocosm에 대한 현장 시험", 한국육수학회지, 제28권, 487-495.
  12. 한명수, 장등혁, 이경, 1996, "수계의 산성화가 식물 플랑크톤 천이와 현존량에 미치는 영향: Mesocosm Test", 한국환경과학회 가을학술발표 초록집, pp. 30.
  13. 황청연, 조병철, 2005, "산소 미세전극을 이용한 강화군과 인천 북항 조간대 갯벌의 순 광합성률 측정", 한국해양학회지(바다), 제10권, 31-37.
  14. Abbott, W., 1966, "Microcosm studies on estuarine water. I. The replicability of microcosms", J. Water Pollut. Control Fed., Vol. 38, 258-270.
  15. Ahn, C., Mitsch, W.J. and Wolfe, W.E., 2001, "Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment", Wat. Res., Vol. 35, 633-642. https://doi.org/10.1016/S0043-1354(00)00325-0
  16. Ahn, C. and Mitsh, W.J., 2002, "Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes", Ecol. Eng., Vol. 18, 327-342. https://doi.org/10.1016/S0925-8574(01)00092-1
  17. Bak, R.P.M. and Nieuwland, G., 1987, "Densities of protozoan nanoplankton populations in intertidal mesocosms: influence of oil pollution and a self-igniting cleaning agent", Neth. J. Sea Res., Vol. 21, 303-315. https://doi.org/10.1016/0077-7579(87)90005-6
  18. Bellerby, R.G.J., Schulz, K.G., Riebesell, U., Neill, C., Nondal, G., Johannessen, T. and Brown, K.R., 2007, "Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment", Biogeosciences Discuss., Vol. 4, 4631-4652. https://doi.org/10.5194/bgd-4-4631-2007
  19. Beyers, R.J., 1964, "The microcosm approach to ecosystem biology", Amer. Biol. Teacher, Vol. 26, 491-498. https://doi.org/10.2307/4440732
  20. Boyle, T.P. and Fairchild, J.F., 1997, "The role of mesocosm studies in ecological risk analysis", Ecol. Appl., Vol. 7, 1099- 1102. https://doi.org/10.1890/1051-0761(1997)007[1099:TROMSI]2.0.CO;2
  21. Carpenter, S.R., 1996, "Microcosm experiments have limited relevance for community and ecosystem ecology", Ecology, Vol. 77, 677-680. https://doi.org/10.2307/2265490
  22. Choi, S.C., Kwon, K.K., Sohn, J.H. and Kim, S.J., 2002, "Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms", J. Microbiol. Biotechnol., Vol. 12, 431-436.
  23. Connell, J.H., 1972, "Community interactions on marine rocky intertidal shores", Annu. Rev. Ecol. Systemat., Vol. 3, 169-192. https://doi.org/10.1146/annurev.es.03.110172.001125
  24. Dueri, S., Dahllöf, I., Hjorth, M., Marinov, D. and Zaldívar, J.M., 2009, "Modeling the combined effect of nutrients and pyrene on the plankton population: Validation using mesocosm experiment data and scenario analysis", Ecol. Model., Vol. 220, 2060-2067. https://doi.org/10.1016/j.ecolmodel.2009.04.052
  25. Farke, H., Schulz-Baldes, M., Ohm, K. and Gerlach, S.A., 1984, "Bremerhaven Caisson for intertidal field studies", Mar. Ecol. Prog. Ser., Vol. 16, 193-197. https://doi.org/10.3354/meps016193
  26. Giesy, J.P. and Allred, P.M., 1985, Replicability of aquatic multispecies test systems, In: Caims, J. (Ed), Multispecies Toxicity Testing, Pergamon Press, New York, pp. 18-24.
  27. Henderson, R.S., Smith, S.V. and Evans, E.C., 1976, Flowthrough microcosms for simulation of marine ecosystems: Development and intercomparison of open coast and bay facilities, Report NUC-TP-519, U.S. Navy Undersea Center, San Diego.
  28. Jordan, M.A., Welsh, D.T., Dunn, R.J.K. and Teasdale, P.R., 2009, "Influence of Trypaea australiensis population density on benthic metabolism and nitrogen dynamics in sandy estuarine sediment: A mesocosm simulation", J. Sea Res., Vol. 61, 144- 152. https://doi.org/10.1016/j.seares.2008.11.003
  29. Kang, J.H. and Kim, W.S., 2006, "The effect of enhanced zooplankton on the temporal variation of plankton in a mesocosm", J. KOSMEE., Vol. 9, 109-119.
  30. Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W. and Kim, M., 2006. "The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in controlled mesocosm experiment", Linmol. Oceanogr., Vol. 51, 1629-1636. https://doi.org/10.4319/lo.2006.51.4.1629
  31. Kraufvelin, P., 1998, "Model ecosystem replicability challenged by the "soft" reality of a hard bottom mesocosm", J. Exp. Mar. Biol. Ecol., Vol. 222, 247-267. https://doi.org/10.1016/S0022-0981(97)00143-3
  32. Kraufvelin, P., 1999, "Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques", J. Exp. Mar. Biol. Ecol., Vol. 240, 229-258. https://doi.org/10.1016/S0022-0981(99)00061-1
  33. Kuiper, J., De Wilde, P. and Wolff, W., 1984, "Effects of an oil spill in outdoor model tidal flat ecosystems", Mar. Pollut. Bull., Vol. 15, 102-106. https://doi.org/10.1016/0025-326X(84)90445-4
  34. Kuwae, T., Kibe, E. and Nakamura Y., 2003, "Effect of emersion and immersion on the porewater nutrient dynamics of an intertidal sandflat in Tokyo Bay", Estuarine, Coastal Shelf Sci., Vol. 57, 929-940. https://doi.org/10.1016/S0272-7714(02)00423-7
  35. Lassen, M.K., Nielsen, K.D., Richardson, K., Garde, K. and Schlüter, L., 2010, "The effects of temperature increases on a temperate phytoplankton community-A mesocosm climate change scenario", J. Exp. Mar. Biol. Ecol., Vol. 383, 79-88. https://doi.org/10.1016/j.jembe.2009.10.014
  36. Mann, K.H., 1977, "Destruction of kelp-beds by sea by sea uchins: A cyclical phenomenon or irreversible degradation?", Helgol. wiss. Meeresunters., Vol. 30, 455-467. https://doi.org/10.1007/BF02207854
  37. Menzel, D.W. and Case, J., 1977, "Concept and design: controlled ecosystem pollution experiment", Bull. Bar. Sci., Vol. 27, 1-7.
  38. Naito, W., Miyamoto, K., Nakanishi, J., Masunaga, S. and Bartell, S.M., 2003, "Evaluation of an ecosystem model in ecological risk assessment of chemicals", Chemosphere, Vol. 53, 363- 375. https://doi.org/10.1016/S0045-6535(03)00055-9
  39. Nixon, S.W., Alonso, D., Pilson, M.E.Q. and Buckley, B.A., 1980, Turbulent mixing in aquatic microcosms, pp. 818-849, In: Giesy, Jr., J.P. (Ed), Microcosms in Ecological Research, Technical Information Center, U.S. Department of Energy, Symposium Series 52 (CONF-781101).
  40. Oh, I.H. and Silow, E.A., 2003, "Application of exergy in equaic ecosystems health assessment: exprimental approach and field observations", Korean J. Limnol., Vol. 36, 117-123.
  41. Orihel, D.M., Paterson, M.J., Gilmour, C.C., Bodaly, R.A., Blanchfield, P.J., Hintelmann, J., Harris, R.C. and Rudd. J.W.M., 2006, "Effect of loading rate on the fate of mercury in littoral mesocosms", Environ. Sci. Technol., Vol. 40, 5992-6000. https://doi.org/10.1021/es060823+
  42. Pennington, P.L., Delorenzo, M.E., Lawton, J.C., Strozier, E.D., Fulton, M.H. and Scott. G.I., 2004, "Modular estuarine mesocosm validation: ecotoxicological assessment of direct effects with the model compound endosulfan", J. Exp. Mar. Biol. Ecol., Vol. 298, 369-387. https://doi.org/10.1016/S0022-0981(03)00365-4
  43. Perez, K.T., Morrison, G.M., Lackie, N.F., Oviatt, C.A., Nixon, S.W., Buckley, B.A. and Heltshe, J.F., 1977, "The importance of physical and biotic scaling to the experimental simulation of a coastal marine ecosystem", Helgol. wiss. Meeresunters., Vol. 30, 144-162. https://doi.org/10.1007/BF02207832
  44. Pilson, M.E.Q. and Nixon, S.W., 1980, Marine microcosms in ecological research, pp. 724-741, In: Giesy, Jr. J.P. (Ed), Microcosms in Ecological Research, Technical Information Center, U.S. Department of Energy, Symposium Series 52 (CONF- 781101).
  45. Pilson, M.E.Q., Oviatt, C.A., Vargo, G.A. and Vargo, S.L., 1979, Replicability of MERL microcosms: initial observations, In: Advances in Marine Environmental Research, edited by Jacoff, F.S., EPA-600/9-79-035, pp. 361-383.
  46. Schindler, D.W., 1998, "Replication versus realism: The need for ecosystem-scale experiments", Ecosystems, Vol. 1, 323-334. https://doi.org/10.1007/s100219900026
  47. Sundelin, B., 1983, "Effects of cadmium on Pontoporeia affinis (Crustacea: Amphipoda) in laboratory soft-bottom microcosms", Mar. Biol., Vol. 74, 203-212. https://doi.org/10.1007/BF00413923
  48. UNESCO, 1991, Manual on marine experimental ecosystems, UNESCO Technical Papers in Marine Science (No. 61), 178pp.
  49. Vadeboncoeur, Y., Vander Zanden, M.J. and Lodge, D.M., 2002, "Putting the lake back together: reintegrating benthic pathways into lake food web models", BioScience, Vol. 52, 44-54. https://doi.org/10.1641/0006-3568(2002)052[0044:PTLBTR]2.0.CO;2
  50. Welsh, D.T, 2003, "It's a dirty job but someone has to do it: The role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column", Chem. Ecol., Vol. 19, 321-342. https://doi.org/10.1080/0275754031000155474
  51. Wilde, P.A.W.J. and Kuipers, B.R., 1977, "A large indoor tidal mud-flat ecosystem", Helgol. wiss. Meeresunters., Vol. 30, 334- 342. https://doi.org/10.1007/BF02207845
  52. Wright, R.F., 1998, "Effect of increased carbon dioxide and temperature on runoff chemistry at a forested catchment in southern Norway (CLIMEX project)", Ecosystems, Vol. 1, 216-225. https://doi.org/10.1007/s100219900017
  53. Yang, J.S., Kim, Y.T. and Choi, K.W., 2004, "The monitoring of biogeochemical interactions between sediemtn and water: a mesocosm study", J. Korean Soc. Oceanogr., Vol. 39, 107-118.
  54. Yang, J.S., Kim, Y.T. and Choi, K.W., 2004, "The monitoring of biogeochemical interactions between sediemtn and water: a mesocosm study", J. Korean Soc. Oceanogr., Vol. 39, 107-118.