DOI QR코드

DOI QR Code

Association Between MicroRNA196a2 rs11614913 Genotypes and the Risk of Non-Small Cell Lung Cancer in Korean Population

  • Hong, Young-Seoub (Department of Preventive Medicine, Dong-A University College of Medicine) ;
  • Kang, Ho-Jin (Department of Preventive Medicine, Dong-A University College of Medicine) ;
  • Kwak, Jong-Young (Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine) ;
  • Park, Byung-Lae (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • You, Chang-Hun (Department of Preventive Medicine, Dong-A University College of Medicine) ;
  • Kim, Yu-Mi (Department of Preventive Medicine, Dong-A University College of Medicine) ;
  • Kim, Heon (Department of Preventive Medicine, Chungbuk National University College of Medicine)
  • Received : 2010.12.14
  • Accepted : 2011.03.16
  • Published : 2011.05.31

Abstract

Objectives: The microRNA (miRNA) miR-196a2 may play an important role in lung cancer development and survival by altering binding activity of target mRNA. In this study, we evaluated their associations with the susceptibility of non-small cell lung cancers (NSCLC) by case-control study in a Korean population. Methods: We performed genotyping analyses for miR-196a2 rs11614913 T/C at miRNA regions in a case-control study using blood samples of 406 NSCLC patient and 428 cancer-free control groups. Results: The total C allele frequencies for miR-196a2 were 48.8% for the patients and 45.6% for the controls; and the genotype frequencies of TT, TC, and CC were 23.7%, 55.2%, and 21.1% for the patients and 31.1%, 46.35%, and 22.4% for the controls (p<0.05). Participants who possesses TC/CC genotypes showed high risk for NSCLC compared to those possessed TT genotypes (OR, 1.42; 95% CI, 1.03 to 1.96). The association was persisted in 60 and older age group, male, smokers, those without family history for cancer. However, no significant association of CC genotypes in recessive genetic model was observed. Conclusions: In conclusion, this case-control study provides evidence that miR-196a2 rs11614913 C/T polymorphisms are associated with a significantly increased risk of NSCLC in a dominant model, indicating that common genetic polymorphisms in miR-196a2 rs11614913 are associated with NSCLC. The association of miR196a2 rs11614913 polymorphisms and NSCLC risk require confirmation through additional larger studies.

Keywords

References

  1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543): 853-858. https://doi.org/10.1126/science.1064921
  2. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294(5543): 862-864. https://doi.org/10.1126/science.1065329
  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 2003; 113(6): 673-676. https://doi.org/10.1016/S0092-8674(03)00428-8
  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-838. https://doi.org/10.1038/nature03702
  6. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259-269. https://doi.org/10.1038/nrc1840
  7. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39(5): 673-677. https://doi.org/10.1038/ng2003
  8. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753-3756. https://doi.org/10.1158/0008-5472.CAN-04-0637
  9. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65(21): 9628-9632. https://doi.org/10.1158/0008-5472.CAN-05-2352
  10. Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 2007; 48(2): 410-412. https://doi.org/10.1080/10428190601059738
  11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-15529. https://doi.org/10.1073/pnas.242606799
  12. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 2007; 67(4): 1419-1423. https://doi.org/10.1158/0008-5472.CAN-06-4074
  13. Lum AM, Wang BB, Li L, Channa N, Bartha G, Wabl M. Retroviral activation of the mir-106a microRNA Cistron in T lymphoma. Retrovirology 2007; 4: 5. https://doi.org/10.1186/1742-4690-4-5
  14. Slape C, Hartung H, Lin YW, Bies J, Wolff L, Aplan PD. Retroviral insertional mutagenesis identifies genes that collaborate with NUP98-HOXD13 during leukemic transformation. Cancer Res 2007; 67(11): 5148-5155. https://doi.org/10.1158/0008-5472.CAN-07-0075
  15. Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and non small cell lung cancer survival. J Clin Invest 2008; 118(7): 2600-2608.
  16. Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 2009; 18(4): 1183-1187. https://doi.org/10.1158/1055-9965.EPI-08-0814
  17. Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science 2001; 294(5543): 797-799. https://doi.org/10.1126/science.1066315
  18. Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 2008; 79(4): 562-570. https://doi.org/10.1093/cvr/cvn137
  19. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103(48): 18255-18260. https://doi.org/10.1073/pnas.0608791103
  20. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316(5824): 575-579. https://doi.org/10.1126/science.1139089
  21. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007; 100(3): 416-424. https://doi.org/10.1161/01.RES.0000257913.42552.23
  22. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129(2): 303-317. https://doi.org/10.1016/j.cell.2007.03.030
  23. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F, et al. microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 2009; 69(14): 5970-5977. https://doi.org/10.1158/0008-5472.CAN-09-0236
  24. Xu J, Hu Z, Xu Z, Gu H, Yi L, Cao H, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat 2009; 30(8): 1231-1236. https://doi.org/10.1002/humu.21044
  25. Hu Z, Liang J, Wang Z, Tian T, Zhou X, Chen J, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat 2009; 30(1): 79-84. https://doi.org/10.1002/humu.20837
  26. Zhou B, Rao L, Peng Y, Wang Y, Chen Y, Song Y, et al. Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin Chim Acta 2010; 411(17-18): 1287-1290. https://doi.org/10.1016/j.cca.2010.05.010

Cited by

  1. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies vol.27, pp.6, 2012, https://doi.org/10.1093/mutage/ges052
  2. Mechanistic Roles of Noncoding RNAs in Lung Cancer Biology and Their Clinical Implications vol.2012, pp.None, 2011, https://doi.org/10.1155/2012/737416
  3. miR-196a2 polymorphisms and susceptibility to cancer: A meta-analysis involving 24,697 subjects vol.3, pp.2, 2011, https://doi.org/10.3892/etm.2011.399
  4. A Genetic Variant in miR-196a2 Increased Digestive System Cancer Risks: A Meta-Analysis of 15 Case-Control Studies vol.7, pp.1, 2011, https://doi.org/10.1371/journal.pone.0030585
  5. Comprehensive Review of Genetic Association Studies and Meta-Analyses on miRNA Polymorphisms and Cancer Risk vol.7, pp.11, 2011, https://doi.org/10.1371/journal.pone.0050966
  6. Opportunities and Challenges for Selected Emerging Technologies in Cancer Epidemiology: Mitochondrial, Epigenomic, Metabolomic, and Telomerase Profiling vol.22, pp.2, 2011, https://doi.org/10.1158/1055-9965.epi-12-1263
  7. Polymorphisms of microRNA Sequences or Binding Sites and Lung Cancer: A Meta-Analysis and Systematic Review vol.8, pp.4, 2013, https://doi.org/10.1371/journal.pone.0061008
  8. Effects of Common Polymorphism rs11614913 in Hsa-miR-196a2 on Lung Cancer Risk vol.8, pp.4, 2011, https://doi.org/10.1371/journal.pone.0061047
  9. Different Effects of Three Polymorphisms in MicroRNAs on Cancer Risk in Asian Population: Evidence from Published Literatures vol.8, pp.6, 2011, https://doi.org/10.1371/journal.pone.0065123
  10. Two functional polymorphisms in microRNAs and lung cancer risk: a meta-analysis vol.35, pp.3, 2011, https://doi.org/10.1007/s13277-013-1355-1
  11. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and cancer risk: evidence based on 45,816 subjects vol.35, pp.7, 2011, https://doi.org/10.1007/s13277-014-1822-3
  12. Effects of four single nucleotide polymorphisms in microRNA-coding genes on lung cancer risk vol.35, pp.11, 2014, https://doi.org/10.1007/s13277-014-2371-5
  13. Association Analysis of Single Nucleotide Polymorphisms in miR-146a and miR-196a2 on the Prevalence of Cancer in Elderly Japanese: A Case-Control Study vol.15, pp.5, 2011, https://doi.org/10.7314/apjcp.2014.15.5.2101
  14. Individualized medicine enabled by genomics in Saudi Arabia vol.8, pp.suppl1, 2011, https://doi.org/10.1186/1755-8794-8-s1-s3
  15. Functional genetic variants in pre-miR-146a and 196a2 genes are associated with risk of lung cancer in North Indians vol.11, pp.15, 2015, https://doi.org/10.2217/fon.15.143
  16. MicroRNA-196a2 Biomarker and Targetome Network Analysis in Solid Tumors vol.20, pp.6, 2011, https://doi.org/10.1007/s40291-016-0223-2
  17. Somatic Mutation of the SNP rs11614913 and Its Association with Increased MIR 196A2 Expression in Breast Cancer vol.35, pp.2, 2011, https://doi.org/10.1089/dna.2014.2785
  18. MicroRNA Gene Polymorphisms in Evaluating Therapeutic Efficacy After Transcatheter Arterial Chemoembolization for Primary Hepatocellular Carcinoma vol.20, pp.10, 2011, https://doi.org/10.1089/gtmb.2016.0073
  19. MIR196A2 rs11614913 C &gt; T polymorphism correlates with an increased risk of hepatopulmonary syndrome in liver cirrhosis: a case-control study in China : MIR196a2 rs11614913 and HPS in liver cir vol.47, pp.8, 2017, https://doi.org/10.1111/hepr.12790
  20. Association of miR-196a2 rs11614913 and miR-499 rs3746444 polymorphisms with cancer risk: a meta-analysis vol.8, pp.69, 2011, https://doi.org/10.18632/oncotarget.22547
  21. MiR-196a2 and lung cancer in Chinese non-smoking females: a genetic association study and expression analysis vol.8, pp.41, 2011, https://doi.org/10.18632/oncotarget.20174
  22. rs11614913 polymorphism in miRNA-196a2 and cancer risk: an updated meta-analysis vol.11, pp.None, 2011, https://doi.org/10.2147/ott.s154211
  23. Association of mir-196a-2 rs11614913 and mir-149 rs2292832 Polymorphisms With Risk of Cancer: An Updated Meta-Analysis vol.10, pp.None, 2011, https://doi.org/10.3389/fgene.2019.00186
  24. Impacts of single nucleotide polymorphisms in three microRNAs (miR-146a, miR-196a2 and miR-499) on the susceptibility to cervical cancer among Indian women vol.39, pp.4, 2011, https://doi.org/10.1042/bsr20180723
  25. Micro-RNA 196a2 expression and miR-196a2 (rs11614913) polymorphism in T1DM: a pilot study vol.32, pp.10, 2011, https://doi.org/10.1515/jpem-2019-0226
  26. Micro-RNA 196a2 expression and miR-196a2 (rs11614913) polymorphism in T1DM: a pilot study vol.32, pp.10, 2011, https://doi.org/10.1515/jpem-2019-0226
  27. Authors’ reply to Jayaraj et al. ‘s Letter to the Editor re: MIR196A2 rs11614913 contributes to susceptibility to colorectal cancer in Iranian population: A multi-center case-control study vol.801, pp.None, 2011, https://doi.org/10.1016/j.gene.2021.145849