DOI QR코드

DOI QR Code

Effect of Green Tea on Tissue Distribution and Deposition of 14C-Benzo[a]pyrene in Rats

흰쥐에서 녹차의 섭취가 14C-Benzo[a]pyrene의 조직 분배 및 잔류에 미치는 영향

  • Kim, Ju-Yeon (Dept. of Food and Nutrition, Changwon National University) ;
  • Noh, Sang-K. (Dept. of Food and Nutrition, Changwon National University)
  • 김주연 (국립창원대학교 식품영양학과) ;
  • 노상규 (국립창원대학교 식품영양학과)
  • Received : 2011.05.11
  • Accepted : 2011.05.25
  • Published : 2011.06.25

Abstract

Recently, we showed that green tea extract (GTE) markedly lowers the intestinal absorption of $^{14}C$-benzo[a]pyrene ($^{14}C$-BaP) and enhances its secretion into the biliary route, suggesting a protective role for GTE against body burden. These findings indicate that green tea could be used as an effective dietary means against the toxicity of BaP. The present study, therefore, was designed to investigate if green tea intake could affect the tissue distribution and deposition of $^{14}C$-BaP in rats. Male Sprague-Dawley rats had free access to a nutritionally adequate AIN-93G diet and deionized water. At ~340 g of weight, the rats were injected intraperitoneally with 27.4 kBq of [4-$^{14}C$]-BaP and 5.0 mg of BaP dissolved in $300\;{\mu}L$ of olive oil and then assigned randomly to the following two groups: one group (GTE) of rats was fed the AIN-93G diet with GTE via drinking water at approx. 4.7 mg of catechins/d, whereas the other was fed the same diet but without GTE (control). At 4 wk of dietary treatment with GTE, animals were euthanized and heart, liver, brain, spleen, kidney, retroperitoneal fat, testis, and epididymal fat were collected, weighed, and analyzed for tissue $^{14}C$-BaP. Both the control and GTE groups continuously gained weight throughout the study, but there was no significant difference between the groups. No significant differences were observed in the weights of heart, liver, brain, spleen, kidney, retroperitoneal fat, testis, and epididymal fat. However, the radioactivities of $^{14}C$-BaP, expressed in dpm/g, were significantly lower in the heart, liver, brain, spleen, and epididymal fat of rats receiving GTE as compared to their respective controls. These data indicate that green tea intake markedly lowers tissue accumulation of $^{14}C$-BaP. Taken together, these findings suggest that the decreased tissue levels of BaP by GTE intake may be associated with lowered intestinal absorption of BaP and its enhanced secretion into the bile.

잔류성이 강하고 높은 지용성질을 가지는 식품오염물질인 benzo[a]pyrene(BaP)은 녹차 섭취에 의해서 소장에서 흡수가 억제되고 총담관으로의 배출이 증가되는 것으로 최근에 보고하였다. 이번 연구는 흰쥐를 이용해서 $^{14}C$-BaP를 복강주사한 후, 사람과 비교해서 1잔에 해당하는 녹차추출물을 4주간 매일 지속적으로 공급하였을 때, $^{14}C$-BaP의 조직분배 및 잔류에 미치는 영향을 조사하였다. 27.4 kBq $^{14}C$-BaP를 복강주사한 후 표준식이와 증류수만 공급된 동물군을 대조군, 표준식이와 녹차추출물(4.7 mg catechins/day)을 공급받은 동물군을 녹차군으로 하여 4주간 사육하였다. 그리고 4주째에 심장, 간장, 뇌, 비장, 신장, 후복막지방, 고환, 부고환지방 조직을 적출하여 무게를 측정하고 각 조직에 잔류하는 $^{14}C$-BaP의 방사선 활성도를 측정하였다. 대조군과 녹차군 모두 연구 시작부터 종료 시까지 지속적으로 체중이 증가하였으나 동물군 간에 유의적인 차이는 없었다. 장기의 무게 또한 각 조직 모두 동물군 간에 유의적인 차이가 없었다. 조직 g당 $^{14}C$-BaP의 잔류량은 심장에서 가장 높았고 다음으로 뇌, 부고환지방, 비장, 신장, 간장, 후복막지방, 고환 순으로 높았으며, 조직 전체의 $^{14}C$-BaP의 잔류량은 부고환지방에서 가장 높았고 다음으로 간장, 후복막지방, 심장, 뇌, 신장, 고환, 비장 순으로 나타났다. 녹차 섭취에 의해서 조직 g당 $^{14}C$-BaP의 방사선 활성도와 조직 전체 당 $^{14}C$-BaP 방사선 활성도 모두 심장, 간장, 뇌, 비장, 부고환지방에서 급격하게 감소된 것으로 나타났다. 이상의 실험결과들을 종합해 볼 때, 4주 동안 하루 1잔에 해당하는 녹차추출물 섭취가 BaP의 조직 분배를 유의적으로 감소시켜 조직 잔류에 영향을 미치는 것을 이 실험을 통해서 확인할 수 있었다.

Keywords

References

  1. Hennig B, Ettinger AS, Jandacek RJ, Koo S, McClain C, Seifried H, Silverstone A, Watkins B, Suk WA. 2007. Using nutrition for intervention and prevention against environmental chemical toxicity and associated diseases. Environ Health Perspect 115: 493-495. https://doi.org/10.1289/ehp.9549
  2. Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. 2001. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 39: 423-436. https://doi.org/10.1016/S0278-6915(00)00158-7
  3. Lawrence JF, Weber DF. 1984. Determination of polycyclic aromatic hydrocarbons in some Canadian commercial fish, shellfish, and meat products by liquid chromatography with confirmation by capillary gas chromatography-mass spectrometry. J Agric Food Chem 32: 789-794. https://doi.org/10.1021/jf00124a022
  4. Lawrence JF, Weber DF. 1984. Determination of polycyclic aromatic hydrocarbons in Canadian samples of processed vegetable and dairy products by liquid chromatography with fluorescence detection. J Agric Food Chem 32: 794- 797 https://doi.org/10.1021/jf00124a023
  5. Desrois M, Sciaky M, Lan C, Cozzone PJ, Bernard M, Phillips DH. 1999. Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443: 139-147. https://doi.org/10.1016/S1383-5742(99)00016-2
  6. Lee BM, Shim GA. 2007. Dietary exposure estimation of benzo[a]pyrene and cancer risk assessment. J Toxicol Environ Health 68: 1391-1394.
  7. Baird WM, Hooven LA, Mahadevan B. 2005. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45: 106-114. https://doi.org/10.1002/em.20095
  8. Alexandrov K, Rojas M, Satarug S. 2010. The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol Lett 198: 63-68. https://doi.org/10.1016/j.toxlet.2010.04.009
  9. Cabrera C, Artacho R, Giménez R. 2006. Beneficial effects of green tea-a review. J Am Coll Nutr 25: 79-99. https://doi.org/10.1080/07315724.2006.10719518
  10. Higdon JV, Frei B. 2003. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Sci Nutr 43: 89-143. https://doi.org/10.1080/10408690390826464
  11. Muramatsu K, Fukuyo M, Hara Y. 1986. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Vitaminol 32: 613-622. https://doi.org/10.3177/jnsv.32.613
  12. Yang TTC, Koo MWL. 1997. Hypocholesterolemic effects of Chinese tea. Pharmacol Res 35: 505-512. https://doi.org/10.1006/phrs.1997.0176
  13. Yang MH, Wang CH, Chen HL. 2001. Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet. J Nutr Biochem 12: 14-20. https://doi.org/10.1016/S0955-2863(00)00140-6
  14. Raederstorff DG, Schlachter MF, Elste V, Weber P. 2003. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14: 326-332. https://doi.org/10.1016/S0955-2863(03)00054-8
  15. Ikeda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T, Yayabe F, Sugano M. 1992. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1127: 141-146. https://doi.org/10.1016/0005-2760(92)90269-2
  16. Loest HB, Noh SK, Koo SI. 2002. Green tea extract inhibits the lymphatic absorption of cholesterol and α-tocopherol in ovariectomized rats. J Nutr 132: 1282-1288. https://doi.org/10.1093/jn/132.6.1282
  17. Wang S, Noh SK, Koo SI. 2006. Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats. J Nutr Biochem 17: 492-498. https://doi.org/10.1016/j.jnutbio.2006.03.004
  18. Wang S, Noh SK, Koo SI. 2006. Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats. J Nutr 136: 2971-2976.
  19. Koo SI, Noh SK. 2007. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid- lowering effect. J Nutr Biochem 18: 179-183. https://doi.org/10.1016/j.jnutbio.2006.12.005
  20. Kim J, Koo SI, Noh SK. 2011. Green tea extract drastically lowers the lymphatic absorption and increases the biliary secretion of ${14}^C$-benzo[a]pyrene in rat. J Nutr Biochem 22 in press.
  21. Kim J, Noh SK, Seo Y, Koo SI. 2009. Green tea extract enhances the biliary secretion of benzo[a]pyrene in rats. FASEB J 23: 721.7.1.
  22. Buesen R, Mock M, Seidel A, Jacob J, Lampen A. 2002. Interaction between metabolism and transport of benzo[ a]pyrene and its metabolites in enterocytes. Toxicol Appl Pharmacol 183: 168-178. https://doi.org/10.1006/taap.2002.9484
  23. Buesen R, Mock M, Nau H, Seidel A, Jacob J, Lampen A. 2003. Human intestinal Caco-2 cells display active transport of benzo[a]pyrene metabolites. Chem Biol Inter 142: 201-221. https://doi.org/10.1016/S0009-2797(02)00076-5
  24. Fang C, Zhang QY. 2010. The role of small-intestinal P450 enzymes in protection against systemic exposure of orally administered benzo[a]pyrene. J Pharmacol Exp Ther 334: 156-163. https://doi.org/10.1124/jpet.110.167742
  25. Ebert B, Seidel A, Lampen A. 2005. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Carcinogenesis 26: 1754-1763. https://doi.org/10.1093/carcin/bgi139
  26. Ebert B, Seidel A, Lampen A. 2005. Induction of phase-1 metabolizing enzymes by oltipraz, flavones and indole-3- carbinol enhance the formation and transport of benzo[a] pyrene sulfate conjugates in intestinal Caco-2 cells. Toxicol Lett 158: 140-151. https://doi.org/10.1016/j.toxlet.2005.03.016
  27. Ebert B, Seidel A, Lampen A. 2007. Phytochemicals induce breast cancer resistance protein in Caco-2 cells and enhance the transport of benzo[a]pyrene-3-sulfate. Toxicol Sci 96: 227-236.
  28. Bock KW, Clausbruch UC, Winne D. 1979. Absorption and metabolism of naphthalene and benzo(a)pyrene in the rat jejunum in situ. Med Biol 57: 262-264.
  29. Laher JM, Rigler MW, Vetter RD, Barrowman JA, Patton JS. 1984. Similar bioavailability and lymphatic transport of benzo(a)pyrene when administered to rats in different amounts of dietary fat. J Lipid Res 25: 1337-1342.
  30. Maliakal PP, Coville PF, Wanwimolruk S. 2001. Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 53: 569-577. https://doi.org/10.1211/0022357011775695
  31. Shu HP, Bymun EN. 1983. Systemic excretion of benzo( a)pyrene in the control and microsomally induced rat: the influence of plasma lipoproteins and albumin as carrier molecules. Cancer Res 43: 485-490.
  32. Sweeny DJ, Reinke LA. 1987. Metabolism of benzo[a]pyrene in the perfused rat liver: factors affecting the release of phenolic metabolites into the bile and perfusate. Carcinogenesis 8: 779-783. https://doi.org/10.1093/carcin/8.6.779
  33. Reeves PG, Nielsen FH, Fahey GC Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939- 1951. https://doi.org/10.1093/jn/123.11.1939
  34. Reeves PG. 1996. AIN-93 purified diets for the study of trace element metabolism in rodents. In Trace Elements in Laboratory Rodents. Watson RR, ed. CRC Press, Boca Raton, FL, USA. p 3-37.
  35. Imai K, Nakachi K. 1995. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. Br Med J 310: 693-696. https://doi.org/10.1136/bmj.310.6981.693
  36. Folch PJ, Lees M, Sloane-Stanley GM. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  37. Bajerska J, Wozniewicz M, Jeszka J, Drzymala-Czyz S, Walkowiak J. 2011. Green tea aqueous extract reduces visceral fat and decreases protein availability in rats fed with a high-fat diet. Nutr Res 31: 157-164. https://doi.org/10.1016/j.nutres.2011.01.005
  38. Chu KO, Wang CC, Chu CY, Choy KW, Pang CP, Rogers MS. 2007. Uptake and distribution of catechins in fetal organs following in utero exposure in rats. Hum Reprod 22: 280-287. https://doi.org/10.1093/humrep/del353
  39. Miksys SL, Tyndale RF. 2002. Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 27: 406- 415.

Cited by

  1. Green Tea Extract Decreases the Lymphatic Absorption of Trans Fat in Rats vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.073