DOI QR코드

DOI QR Code

Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity

  • Kudan, Sanya (Biotechnology Program, Biochemistry Department, Faculty of Science, Chulalongkorn University) ;
  • Kuttiyawong, Kamontip (Chemistry Department, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus) ;
  • Pichyangkura, Rath (Department of Biochemistry, Faculty of Science, Chulalongkorn University)
  • Received : 2010.12.18
  • Accepted : 2011.03.21
  • Published : 2011.06.30

Abstract

Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.

Keywords

References

  1. Davies, G. and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolase. Structure 3, 853-859. https://doi.org/10.1016/S0969-2126(01)00220-9
  2. Morimoto, K., Karita, S., Kimura, T., Sakka, K. and Ohmiya, K. (1997) Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179, 7306-7314.
  3. Svitil, A. L. and Kirchman, D. L. (1998) A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of $1,4-{\beta}-glycanases$. Microbiology 144, 1299-1308. https://doi.org/10.1099/00221287-144-5-1299
  4. Watanabe, T., Uchida, M., Kobori, K. and Tanaka, H. (1994) Site-directed mutagenesis of Asp-197 and Asp-202 residues in chitinase A1 of Bacillus circulars WL-12. Biosci. Biotech. Biochem. 58, 2283-2285. https://doi.org/10.1271/bbb.58.2283
  5. Watanabe, T., Oyanagi, W., Suzuki, K. and Tanaka, H. (1990) Chitinase A1 in chitin degradation. J. Bacteriol. 172, 4017-4022.
  6. Blaak, H. and Schrempf, H. (1995) Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur. J. Biochem. 229, 132-139. https://doi.org/10.1111/j.1432-1033.1995.tb20447.x
  7. Suginta, W., Vongsuwan, A., Songdiriritthigul, C., Prinz, H., Estibeiro, P., Duncan, R. R., Svati, J. and Fothergill- Gilmore, L. A. (2004) An endochitinase A from Vibio carchariae: cloning, expression, masss and sequence analyses, and chitin hydrolysis. Arch. Biochem. Biophys. 424, 171-180. https://doi.org/10.1016/j.abb.2004.01.017
  8. Lin, F. P., Juang, W. Y., Chang, K. H. and Chen, H. C. (2001) G561 site-directed deletion mutant chitinase from Aeromonas caviae is active without its 304 C-terminal amino acid residues. Arch. Microbiol. 175, 220-225. https://doi.org/10.1007/s002030100261
  9. Chuang, H. H. and Lin, F. P. (2007) New role of C-terminal 30 amino acids on the insoluble chitin hydrolysis in actively engineered chitinase from Vibio parahaemolyticus. Appl. Microbiol. Biotechnol. 76, 123-133. https://doi.org/10.1007/s00253-007-0990-0
  10. Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S. and Tanaka, H. (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176, 4465-4472. https://doi.org/10.1128/jb.176.15.4465-4472.1994
  11. Wang, F. P., Li, Q., Zhou, Y., Li, M. G. and Xiao, X. (2003) The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins 53, 908-916. https://doi.org/10.1002/prot.10501
  12. Chan, M. C., Lai, P. L. and Wu, M. L. (2004) Biochemical characterization and site-directed mutational analysis of the double chitin-binding domain from chitinase 92 of Aeromonas hydrophila JP101. FEMS Microbiol. Lett. 232, 61-66. https://doi.org/10.1016/S0378-1097(04)00014-X
  13. Pichyangkura, R., Kudan, S., Kuttiyawong, K., Sukwattanasinitt, M. and Aiba, S. (2002) Quantitative production of 2-acetamido-2-deoxy-D-glucose from crystalline chitin by bacterial chitinase. Carbohydr. Res. 337, 557-559. https://doi.org/10.1016/S0008-6215(02)00007-1
  14. Suzuki, K., Taiyoji, M., Sugawar, N., Nikaidou, N., Henrissat, B. and Watanabe, T. (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem. J. 343, 587-596. https://doi.org/10.1042/0264-6021:3430587
  15. Prag, G., Vorias, C. E. and Oppenheim, A. B. (2001) Conservation of structural elements and catalytic mechanism in the chitinolytic enzymes from Serratia marcescens; in Chitin Enzymology (Muzzarelli, R. A. A., ed.) p. 351, European Chitin Society, Ancona, Italy.
  16. Suzuki, K., Sugawara, N., Suzuki, M., Uchiyama, T., Katouno, F. and Nikaidou, N. (2002) Chitinases A, B, and C1 from Serratia marcescens 2170: enzymatic properties and synergism on chitin degradation. Biosci. Biotechnol. Biochem. 66, 1075-1083. https://doi.org/10.1271/bbb.66.1075
  17. Tsujibo, H., Orikoshi, H., Tanno, H., Fujimoto, K., Miyamoto, K., Imada, C. and Inamori, Y. (1993) Cloning, sequence, and expression of a chitinase gene from a marine bacterium, Alteromonas sp. strain O-7. J. Bacteriol. 175, 111-115. https://doi.org/10.1128/jb.175.1.111-116.1993
  18. Perrakis, A., Tew, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S. and Vorgias, C. E. (1994) Crystal structure of a bacterial chitinase at 2.3 ${\AA}$ resolution. Structure 2, 1160- 1180.
  19. Uchiyama, T., Katouno, F., Nikaidou, N., Nonaka, T., Sugiyama, J. and Watanabe, T. (2001) Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J. Biol. Chem. 276, 41343-41349. https://doi.org/10.1074/jbc.M103610200
  20. Miyamoto, K., Nukui, E., Itoh, H., Sato, T., Kobayashi, T., Imada, C., Watanabe, E., Inamori, Y. and Tsujibo, H. (2002) Molecular analysis of the gene encoding a novel chitin-binding protease from Alteromonas sp. strain O-7 and its role in the chitinolytic system. J. Bacteriol. 184, 1865-1872. https://doi.org/10.1128/JB.184.7.1865-1872.2002
  21. Orikoshi, H., Baba, H., Nakayama, S., Kashu, H., Miyamoto, K., Yasuda, M. and Tsujibo, H. (2003) Molecular analysis of the gene encoding a novel cold-adapted chitinase (ChiB) from Alteromonas sp. strain O-7. J. Bacteriol. 185, 1153-1159. https://doi.org/10.1128/JB.185.4.1153-1160.2003
  22. Brurberg, M. B., Nes, I. F. and Eijsink, V. G. (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142, 1581. https://doi.org/10.1099/13500872-142-7-1581
  23. van Aalten, D. M. F., Synstad, B., Brurberg, M. B., Hough, E., Riise, B. W., Eijsink, V. G. H. and Wierenga, R. K. (2000) Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. Proc. Nat. Acad. Sci. U. S. A. 97, 5842-5847. https://doi.org/10.1073/pnas.97.11.5842
  24. Orikoshi, H., Nakayama, S., Miyamoto, K., Hanato, C., Yasuda, M., Inamori, Y. and Tsujibo, H. (2005) Roles of four chitinases (ChiA, ChiB, ChiC, and ChiD) in the chitin degradation system of marine bacterium Alteromonas sp. Strain O-7. Appl. Environ. Microbiol. 71, 1811-1815. https://doi.org/10.1128/AEM.71.4.1811-1815.2005
  25. Kudan, S. and Pichyangkura, R. (2009) Purification and characterization of thermostable chitinase from Bacillus licheniformis SK-1. Appl. Biochem. Biotechnol. 157(1), 23-35. https://doi.org/10.1007/s12010-008-8328-7
  26. Takayanagi, T., Ajisaka, K., Takiguchi, Y. and Shimahar, K. (1991) Isolation and characterization of thermostable chitinase from Bacillus licheniformis X-7u. Biochim. Biophys. Acta. 1078, 404-410. https://doi.org/10.1016/0167-4838(91)90163-T
  27. Trackuk, L. A., Revina, L. P., Shemayakina, T. M., Chestukhina, G. G. and Stepanov, V. M. (1996) Chitinases of Bacillus licheniformis B-6839: isolation and properties. Can. J. Microbiol. 42, 307-315. https://doi.org/10.1139/m96-046
  28. Tantimavanich, S., Pantuwatana, S., Bhumiratana, A. and Panbangred, W. (1998) Multiple chitinase enzyme from a single gene of Bacillus licheniformis TP-1. J. Ferment. Bioeng. 85, 259-265. https://doi.org/10.1016/S0922-338X(97)85672-3
  29. Chuang, H. H., Lin, H. Y. and Lin, F. P. (2008) Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties. FEBS J. 275, 2240-2254. https://doi.org/10.1111/j.1742-4658.2008.06376.x
  30. Kuttiyawong, K., Nakapong, S. and Pichyangkura, R. (2008) The dual exo/endo-type mode and the effect of ionic strength on the mode of catalysis of chitinase 60 (CHI60) from Serratia sp. TU09 and its mutants. Carbohydr. Res. 343, 2754-2762. https://doi.org/10.1016/j.carres.2008.05.020
  31. Sakai, K., Uchiyama, T., Matahira, Y. and Nanjo, F. (1991) Immobilization of chitinolytic enzymes and continuous production of N-acetylglucosamine with the immobilized enzymes. J. Ferment. Bioeng. 72, 168-172. https://doi.org/10.1016/0922-338X(91)90211-X
  32. Trudel, J. and Asselin, A. (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178, 362-366. https://doi.org/10.1016/0003-2697(89)90653-2
  33. Oakley, R. R. and Kirsch, D. R. (1980) Simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361-363. https://doi.org/10.1016/0003-2697(80)90470-4
  34. Imoto, T. and Yagishita, K. (1971) A simple activity measurement of lysozyme. Agri. Biol. Chem. 35, 1154-1156. https://doi.org/10.1271/bbb1961.35.1154
  35. Tanaka, T., Fujuwara, S., Nishikori, S., Fukui, T., Takagi, M. and Imanaka, T. (1999) A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1. Appl. Environ. Microbiol. 65, 5338-5344.