DOI QR코드

DOI QR Code

Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae

  • Kim, Won-Tae (National Academy of Agricultural Science, Rural Development Administration) ;
  • Bae, Sung-Woo (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, A-Young (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Kwan-Ho (National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sang-Beom (National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Young-Cheol (National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Sang-Mi (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Young-Han (Department of Obstetrics and Gynecology, Hallym University Sacred Heart Hospital) ;
  • Koh, Young-Ho (Ilsong Institute of Life Science, Hallym University)
  • Received : 2010.11.05
  • Accepted : 2011.04.06
  • Published : 2011.06.30

Abstract

To investigate the molecular scavenging capabilities of the larvae of Hermetia illucens, two serine proteases (SPs) were cloned and characterized. Multiple sequence alignments and phylogenetic tree analysis of the deduced amino acid sequences of Hi-SP1 and Hi-SP2 were suggested that Hi-SP1 may be a chymotrypsin- and Hi-SP2 may be a trypsin-like protease. Hi-SP1 and Hi-SP2 3-D homology models revealed that a catalytic triad, three disulfide bonds, and a substrate-binding pocket were highly conserved, as would be expected of a SP. E. coli expressed Hi-SP1 and Hi-SP2 showed chymotrypsin or trypsin activities, respectively. Hi-SP2 mRNAs were consistently expressed during larval development. In contrast, the expression of Hi-SP1 mRNA fluctuated between feeding and molting stages and disappeared at the pupal stages. These expression pattern differences suggest that Hi-SP1 may be a larval specific chymotrypsin-like protease involved with food digestion, while Hi-SP2 may be a trypsin-like protease with diverse functions at different stages.

Keywords

References

  1. Yan, J., Cheng, Q., Li, C. B. and Aksoy, S. (2001) Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans. Insect Mol. Biol. 10, 47-56. https://doi.org/10.1046/j.1365-2583.2001.00232.x
  2. Zhu, Y. C., Zeng, F. and Oppert, B. (2003) Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae). Insect Biochem. Mol. Biol. 33, 889-899. https://doi.org/10.1016/S0965-1748(03)00094-8
  3. Rawlings, N. D. and Barrett, A. J. (1994) Families of serine peptidases. Methods Enzymol. 244, 19-61. https://doi.org/10.1016/0076-6879(94)44004-2
  4. Noriega, F. G. and Wells, M. A. (1999) A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J. Insect Physiol. 45, 613-620. https://doi.org/10.1016/S0022-1910(99)00052-9
  5. Diener, S., Zurbrugg, C. and Tockner, K. (2009) Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag. Res. 27, 603-610. https://doi.org/10.1177/0734242X09103838
  6. Schmidt, A., Jelsch, C., Ostergaard, P., Rypniewski, W. and Lamzin, V. S. (2003) Trypsin revisited: crystallography AT (SUB) atomic resolution and quantum chemistry revealing details of catalysis. J. Biol. Chem. 278, 43357-43362. https://doi.org/10.1074/jbc.M306944200
  7. Krem, M. M. and Di Cera, E. (2001) Molecular markers of serine protease evolution. EMBO J. 20, 3036-3045. https://doi.org/10.1093/emboj/20.12.3036
  8. Benkert, P., Tosatto, S. C. and Schomburg, D. (2008) QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71, 261-277. https://doi.org/10.1002/prot.21715
  9. Kraut, J. (1977) Serine proteases: structure and mechanism of catalysis. Ann. Rev. Biochem. 46, 331-358. https://doi.org/10.1146/annurev.bi.46.070177.001555
  10. Kang, D., Lundstrom, A., Liu, G. and Steiner, H. (2002) An azurocidin-like protein is induced in Trichoplusia ni larval gut cells after bacterial challenge. Dev. Comp. Immunol. 26, 495-503. https://doi.org/10.1016/S0145-305X(02)00009-5
  11. Sui, Y. P., Wang, J. X. and Zhao, X. F. (2009) The impacts of classical insect hormones on the expression profiles of a new digestive trypsin-like protease (TLP) from the cotton bollworm, Helicoverpa armigera. Insect Mol. Biol. 18, 443-452. https://doi.org/10.1111/j.1365-2583.2009.00884.x
  12. Lehane, S. M., Assinder, S. J. and Lehane, M. J. (1998) Cloning, sequencing, temporal expression and tissue-specificity of two serine proteases from the midgut of the blood-feeding fly Stomoxys calcitrans. Eur. J. Biochem. 254, 290-296. https://doi.org/10.1046/j.1432-1327.1998.2540290.x
  13. Taylor, M. A. and Lee, M. J. (1997) Trypsin isolated from the midgut of the tobacco hornworm, Manduca sexta, is inhibited by synthetic pro-peptides in vitro. Biochem. Biophys. Res. Commun. 235, 606-609. https://doi.org/10.1006/bbrc.1997.6839
  14. Liu, Y., Sui, Y. P., Wang, J. X. and Zhao, X. F. (2009) Characterization of the trypsin-like protease (Ha-TLP2) constitutively expressed in the integument of the cotton bollworm, Helicoverpa armigera. Arch. Insect. Biochem. Physiol. 72, 74-87. https://doi.org/10.1002/arch.20324
  15. Zhu, Y. C., Liu, X., Maddur, A. A., Oppert, B. and Chen, M. S. (2005) Cloning and characterization of chymotrypsin- and trypsin-like cDNAs from the gut of the Hessian fly [Mayetiola destructor (Say)]. Insect Biochem. Mol. Biol. 35, 23-32. https://doi.org/10.1016/j.ibmb.2004.09.006
  16. Cuc, H. T., Seo, J. B., Choi, J. K., Kim, W. T., Park, S. J., Lee, D. W., Kim, Y. S., Fortini, M. E. and Koh, Y. H. (2009) Generation and characterization of monoclonal antibodies specific to Drosophila presenilin. Hybridoma (Larchmt) 28, 215-220. https://doi.org/10.1089/hyb.2008.0086
  17. Lee, D. W., Seo, J. B., Nam, M. H., Kang, J. S., Kim, S. Y., Kim, A. Y., Kim, W. T., Choi, J. K., Um, Y., Lee, Y., Moon, I. S., Han, H. R., Koh, S. H., Je, Y. H., Lim, K. J., Lee, S. H. and Koh, Y. H. (2011) A combination of biochemical and proteomic analyses reveals Bx-LEC-1 as an antigenic target for the monoclonal antibody 3-2A7-2H5-D9-F10 specific to the pine wood nematode. Mol. Cell Proteomics. mcp.M900521-MCP 200, 1-13.
  18. Kim, W., Bae, S., Park, K., Lee, S., Choi, Y., Han, S. and Koh, Y. (2011) Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). J. Asia PacEntomol. 14,11-14. https://doi.org/10.1016/j.aspen.2010.11.003

Cited by

  1. Dietary and phylogenetic correlates of digestive trypsin activity in insect pests vol.157, pp.2, 2015, https://doi.org/10.1111/eea.12349
  2. Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens vol.82, 2016, https://doi.org/10.1016/j.ijbiomac.2015.10.067
  3. Recombinant Expression and Enzyme Activity of Chymotrypsin-like Protease from Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae) vol.25, pp.2, 2012, https://doi.org/10.7852/ijie.2012.25.2.181
  4. Identification and Physiological Characters of Intestinal Bacteria of the Black Soldier Fly, Hermetia illucens vol.53, pp.1, 2014, https://doi.org/10.5656/KSAE.2013.09.0.049
  5. ) and Impact on Exploitation Potential vol.84, pp.9, 2018, https://doi.org/10.1128/AEM.02722-17