DOI QR코드

DOI QR Code

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Kim, Seok-Jo (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Kwon, Haw-Young (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Son, Sung-Wook (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Kim, Kyoung-Sook (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University) ;
  • Ahn, Hee-Bae (Department of Ophthalmology, College of Medicine, Dong-A University) ;
  • Lee, Young-Choon (Department of Biotechnology and Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
  • Received : 2011.03.08
  • Accepted : 2011.04.15
  • Published : 2011.06.30

Abstract

The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.

Keywords

References

  1. Rogawski, M. A. and Loscher, W. (2004) The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553-564. https://doi.org/10.1038/nrn1430
  2. Blaheta, R. A., Michaelis, M., Driever, P. H. and Cinatl Jr., J. (2005) Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med. Res. Rev. 25, 383-397. https://doi.org/10.1002/med.20027
  3. Blaheta, R. A. and Cinatl Jr., J. (2002) Anti-tumor mechanisms of valproate: a novel role for an old drug. Med. Res. Rev. 22, 492-511. https://doi.org/10.1002/med.10017
  4. Hakomori, S. (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10, 16-24. https://doi.org/10.1097/00062752-200301000-00004
  5. Bektas, M. and Spiegel, S. (2004) Glycosphingolipids and cell death. Glycoconjugate J. 20, 39-47.
  6. Kwon, H. Y., Kang, N. Y., Dae, H. M., Kim, K. S., Kim, C. H., Do, S. I. and Lee, Y. C. (2008) Valproic acid-mediated transcriptional regulation of human GM3 synthase (hST3Gal V) in SK-N-BE(2)-C human neuroblastoma cells. Acta. Pharmacol. Sin. 29, 999-1005. https://doi.org/10.1111/j.1745-7254.2008.00847.x
  7. Kwon, H. Y., Dae, H. M., Song, N. R., Kim, K. S., Kim, C. H. and Lee, Y. C. (2009) Valproic acid induces transcriptional activation of human GD3 synthase (hST8Sia I) gene in SK-N-BE(2)-C human neuroblastoma cells. Mol. Cells 27, 113-118. https://doi.org/10.1007/s10059-009-0012-4
  8. Cinatl Jr., J., Cinatl, J., Scholz, M., Driever, P. H., Henrich, D., Kabickova, H., Vogel, J. U., Doerr, H. W. and Kornhuber, B. (1996) Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs 7, 766-773. https://doi.org/10.1097/00001813-199609000-00008
  9. Cinatl Jr., J., Cinatl, J., Driever, P. H., Kotchetkov, R., Pouckova, P., Kornhuber, B. and Schwabe, D. (1997) Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs 8, 958-963. https://doi.org/10.1097/00001813-199711000-00007
  10. Choi, H. J., Chung, T. W., Kang, N. Y., Kim, K. S., Lee, Y. C. and Kim, C. H. (2003) Transcriptional regulation of the human GM3 synthase (hST3Gal V) gene during monocytic differentiation of HL-60 cells. FEBS Lett. 555, 204-208. https://doi.org/10.1016/S0014-5793(03)01227-4
  11. Chung, T. W., Choi, H. J., Lee, Y. C. and Kim, C. H. (2005) Molecular mechanism for transcriptional activation of ganglioside GM3 synthase and its function in differentiation of HL-60 cells. Glycobiology 15, 233-244.
  12. Kim, S. W., Lee, S. H., Kim, K. S., Kim, C. H., Choo, Y. K. and Lee, Y. C. (2002) Isolation and characterization of the promoter region of the human GM3 synthase gene. Biochim. Biophys. Acta. 1578, 84-89. https://doi.org/10.1016/S0167-4781(02)00505-5
  13. Gupta, S., Campbell, D., Derijard, B. and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389-393. https://doi.org/10.1126/science.7824938
  14. Bhoumik, A. and Ronai, Z. (2008) ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7, 2341-2345. https://doi.org/10.4161/cc.6388
  15. Morton, S., Davis, R. J. and Cohen, P. (2004) Signaling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Lett. 572, 177-183. https://doi.org/10.1016/j.febslet.2004.07.031

Cited by

  1. Upregulation of Human ST8Sia VI (α2,8-Sialyltransferase) Gene Expression by Physcion in SK-N-BE(2)-C Human Neuroblastoma Cells vol.17, pp.8, 2016, https://doi.org/10.3390/ijms17081246
  2. Ciliary body toxicities of systemic oxcarbazepine and valproic acid treatments: electron microscopic study vol.34, pp.2, 2015, https://doi.org/10.3109/15569527.2014.930748
  3. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease vol.119, 2017, https://doi.org/10.1016/j.phrs.2017.02.004
  4. Serum Deprivation-Induced Human GM3 Synthase (hST3Gal V) Gene Expression Is Mediated by Runx2 in Human Osteoblastic MG-63 Cells vol.17, pp.1, 2015, https://doi.org/10.3390/ijms17010035
  5. Induction of Glycosphingolipid GM3 Expression by Valproic Acid Suppresses Cancer Cell Growth vol.291, pp.41, 2016, https://doi.org/10.1074/jbc.M116.751503
  6. Curcumin Downregulates Human GM3 Synthase (hST3Gal V) Gene Expression with Autophagy Induction in Human Colon Carcinoma HCT116 Cells vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/6746412