DOI QR코드

DOI QR Code

Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro

  • Bak, Eun-Jung (Oral Cancer Research Institute, Yonsei University College of Dentistry) ;
  • Park, Hong-Gyu (Atgc Biotechnology Co., Ltd.) ;
  • Lee, Choong-Hwan (ATGen Co., Ltd.) ;
  • Lee, Tong-Il (ATGen Co., Ltd.) ;
  • Woo, Gye-Hyeong (Department of Clinical Laboratory Science, Semyung University) ;
  • Na, Young-Hwa (College of Pharmacy, CHA University) ;
  • Yoo, Yun-Jung (Department of Oral Biology, BK21 Project, Oral Science Research Center, Research Center for Orofacial Hard Tissue Regeneration, Yonsei University College of Dentistry) ;
  • Cha, Jeong-Heon (Oral Cancer Research Institute, Yonsei University College of Dentistry)
  • Received : 2011.04.15
  • Accepted : 2011.04.19
  • Published : 2011.06.30

Abstract

Chana series are new chalcone derivatives. To evaluate the possibility of Chana series as therapeutic agents of type 2 diabetes, the inhibitory effects of Chana series on the activities of ${\alpha}$-glucosidase and DPP-4 were investigated using in vitro enzyme assays, and their effects on adipocyte differentiation were investigated in C3H10T1/2 cells. Chana 1 and Chana 7 among the Chana series showed significant inhibition of ${\alpha}$-glucosidase activity. In DPP-4 enzyme assay, Chana 1 exhibited the highest inhibitory activity while Chana 7 did not. In MTT assay, Chana 1 did not show significant cytotoxicity up to a concentration of $250{\mu}M$, whereas cytotoxicity was observed with Chana 7 at a concentration of $300{\mu}M$. In addition, Chana 1 induced adipocyte differentiation. Therefore, Chana 1 showed inhibitory effects on ${\alpha}$-glucosidase and DPP-4 as well as a stimulatory effect on adipocyte differentiation, suggesting that Chana 1 may be a potential beneficial agent for the treatment of type 2 diabetes.

Keywords

References

  1. Zimmet, P., Alberti, K. G. and Shaw, J. (2001) Global and societal implications of the diabetes epidemic. Nature 414, 782-787. https://doi.org/10.1038/414782a
  2. Astrup, A. and Finer, N. (2000) Redefining type 2 diabetes: 'diabesity' or 'obesity dependent diabetes mellitus'? Obes. Rev. 1, 57-59. https://doi.org/10.1046/j.1467-789x.2000.00013.x
  3. Kahn, B. B. and Flier, J. S. (2000) Obesity and insulin resistance. J. Clin. Invest 106, 473-481. https://doi.org/10.1172/JCI10842
  4. Syiem, D., Syngai, G., Khup, P. Z., Khongwir, B. S., Kharbuli, B. and Kayang, H. (2002) Hypoglycemic effects of Potentilla fulgens L in normal and alloxan-induced diabetic mice. J. Ethnopharmacol. 83, 55-61. https://doi.org/10.1016/S0378-8741(02)00190-3
  5. Ratner, R. E. (2001) Controlling postprandial hyperglycemia. Am. J. Cardiol. 88, 26H-31H. https://doi.org/10.1016/S0002-9149(01)01834-3
  6. Caspary, W. F. (1978) Sucrose malabsorption in man after ingestion of alpha-glucosidehydrolase inhibitor. Lancet 1, 1231-1233.
  7. Lebovitz, H. E. (1997) alpha-Glucosidase inhibitors. Endocrinol. Metab. Clin. North. Am. 26, 539-551. https://doi.org/10.1016/S0889-8529(05)70266-8
  8. Youn, J. Y., Park, H. Y. and Cho, K. H. (2004) Anti-hyperglycemic activity of Commelina communis L.: inhibition of alpha-glucosidase. Diabetes Res. Clin. Pract. 66 (Suppl 1), S149-155. https://doi.org/10.1016/j.diabres.2003.08.015
  9. Li, Y., Wen, S., Kota, B. P., Peng, G., Li, G. Q., Yamahara, J. and Roufogalis, B. D. (2005) Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 99, 239-244. https://doi.org/10.1016/j.jep.2005.02.030
  10. Creutzfeldt, W. and Ebert, R. (1985) New developments in the incretin concept. Diabetologia 28, 565-573. https://doi.org/10.1007/BF00281990
  11. Zander, M., Madsbad, S., Madsen, J. L. and Holst, J. J. (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824-830. https://doi.org/10.1016/S0140-6736(02)07952-7
  12. Drucker, D. J. and Nauck, M. A. (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696-1705. https://doi.org/10.1016/S0140-6736(06)69705-5
  13. Deacon, C. F., Nauck, M. A., Toft-Nielsen, M., Pridal, L., Willms, B. and Holst, J. J. (1995) Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44, 1126-1131. https://doi.org/10.2337/diabetes.44.9.1126
  14. Deacon, C. F., Danielsen, P., Klarskov, L., Olesen, M. and Holst, J. J. (2001) Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 50, 1588-1597. https://doi.org/10.2337/diabetes.50.7.1588
  15. Park, W. J. (1998) Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica. Planta 207, 120-124. https://doi.org/10.1007/s004250050463
  16. Haraguchi, H., Ishikawa, H., Mizutani, K., Tamura, Y. and Kinoshita, T. (1998) Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg Med. Chem. 6, 339-347. https://doi.org/10.1016/S0968-0896(97)10034-7
  17. Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K. and Kinoshita, T. (1998) Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48, 125-129. https://doi.org/10.1016/S0031-9422(97)01105-9
  18. Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., Kuriyama, H., Hotta, K., Nakamura, T., Shimomura, I. and Matsuzawa, Y. (2001) PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094-2099. https://doi.org/10.2337/diabetes.50.9.2094
  19. Staels, B. and Fruchart, J. C. (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54, 2460-2470. https://doi.org/10.2337/diabetes.54.8.2460
  20. Cho, K. W., Lee, O. H., Banz, W. J., Moustaid-Moussa, N., Shay, N. F. and Kim, Y. C. (2010) Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARgamma transcriptional activity. J. Nutr. Biochem. 21, 841-847. https://doi.org/10.1016/j.jnutbio.2009.06.012
  21. Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009) (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125-133. https://doi.org/10.1016/j.bcp.2008.09.033
  22. Tanaka-Amino, K., Matsumoto, K., Hatakeyama, Y., Shima, I., Takakura, S. and Muto, S. (2008) ASP4,000, a novel, selective, dipeptidyl peptidase 4 inhibitor with antihyperglycemic activity. Eur. J. Pharmacol. 590, 444-449. https://doi.org/10.1016/j.ejphar.2008.05.034
  23. Lee, J. S., Suh, J. M., Park, H. G., Bak, E. J., Yoo, Y. J. and Cha, J. H. (2008) Heparin-binding epidermal growth factor-like growth factor inhibits adipocyte differentiation at commitment and early induction stages. Differentiation 76, 478-487. https://doi.org/10.1111/j.1432-0436.2007.00250.x
  24. Bak, E. J., Park, H. G., Kim, J. M., Yoo, Y. J. and Cha, J. H. (2010) Inhibitory effect of evodiamine alone and in combination with rosiglitazone on in vitro adipocyte differentiation and in vivo obesity related to diabetes. Int. J. Obes. (Lond) 34, 250-260. https://doi.org/10.1038/ijo.2009.223

Cited by

  1. Xanthohumol, a Prenylated Chalcone from Beer Hops, Acts as an α-Glucosidase Inhibitor in Vitro vol.62, pp.24, 2014, https://doi.org/10.1021/jf500426z
  2. Synthesis, in vitro evaluation and molecular docking studies of novel amide linked triazolyl glycoconjugates as new inhibitors of α-glucosidase vol.72, 2017, https://doi.org/10.1016/j.bioorg.2017.03.006
  3. Protective effects of a chalcone derivative against Aβ-induced oxidative stress and neuronal damage vol.44, pp.11, 2011, https://doi.org/10.5483/BMBRep.2011.44.11.730
  4. Synthetic and phytocompounds based dipeptidyl peptidase-IV (DPP-IV) inhibitors for therapeutics of diabetes vol.19, pp.10, 2017, https://doi.org/10.1080/10286020.2017.1307183
  5. Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.106
  6. Cacao liquor procyanidins prevent postprandial hyperglycaemia by increasing glucagon-like peptide-1 activity and AMP-activated protein kinase in mice vol.8, pp.2048-6790, 2019, https://doi.org/10.1017/jns.2018.28