DOI QR코드

DOI QR Code

Glucosamine increases vascular contraction through activation of RhoA/Rho kinase pathway in isolated rat aorta

  • Kim, Do-Hyung (Department of Medical Sciences, Kyungpook National University School of Medicine) ;
  • Seok, Young-Mi (Department of Pharmacology and Cardiovascular Research Institute, Kyungpook National University School of Medicine) ;
  • Kim, In-Kyeom (Department of Pharmacology and Cardiovascular Research Institute, Kyungpook National University School of Medicine) ;
  • Lee, In-Kyu (Department of World Class University (WCU) program, Kyungpook National University School of Medicine) ;
  • Jeong, Seong-Yun (Department of Medical Life Science, Catholic University of Daegu CU Leaders' College) ;
  • Jeoung, Nam-Ho (Department of World Class University (WCU) program, Kyungpook National University School of Medicine)
  • Received : 2011.02.17
  • Accepted : 2011.05.06
  • Published : 2011.06.30

Abstract

Diabetes is a well-known independent risk factor for vascular disease. However, its underlying mechanism remains unclear. It has been reported that increased influx of the hexosamine biosynthesis pathway (HBP) induces O-GlcNAcylation of proteins, leading to insulin resistance. In this study, we determined whether or not O-GlcNAc modification of proteins could increase vessel contraction. Using an endothelium-denuded aortic ring, we observed that glucosamine induced OGlcNAcylation of proteins and augmented vessel contraction stimulated by U46619, a thromboxane $A_2$ agonist, via augmentation of the phosphorylation of MLC20$MLC_{20}$, MYPT1(Thr855), and CPI17, but not phenylephrine. Pretreatment with OGT inhibitor significantly ameliorated glucosamine-induced vessel constriction. Glucosamine treatment also increased RhoA activity, which was also attenuated by OGT inhibitor. In conclusion, glucosamine, a product of glucose influx via the HBP in a diabetic state, increases vascular contraction, at least in part, through activation of the RhoA/Rho kinase pathway, which may be due to O-GlcNAcylation.

Keywords

References

  1. Vosseller, K., Wells, L. and Hart, G. W. (2001) Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics. Biochimie. 83, 575-581. https://doi.org/10.1016/S0300-9084(01)01295-0
  2. Wells, L., Vosseller, K. and Hart, G. W. (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376-2378. https://doi.org/10.1126/science.1058714
  3. Hawkins, M., Angelov, I., Liu, R., Barzilai, N. and Rossetti, L. (1997) The tissue concentration of UDP-N-acetylglucosamine modulates the stimulatory effect of insulin on skeletal muscle glucose uptake. J. Biol. Chem. 272, 4889-4895. https://doi.org/10.1074/jbc.272.8.4889
  4. Einstein, F. H., Fishman, S., Bauman, J., Thompson, R. F., Huffman, D. M., Atzmon, G., Barzilai, N. and Muzumdar, R. H. (2008) Enhanced activation of a "nutrient-sensing" pathway with age contributes to insulin resistance. FASEB J. 22, 3450-3457. https://doi.org/10.1096/fj.08-109041
  5. Hanover, J. A., Krause, M. W. and Love, D. C. (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta. 1800, 80-95. https://doi.org/10.1016/j.bbagen.2009.07.017
  6. Buse, M. G. (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290, E1-E8. https://doi.org/10.1152/ajpendo.00329.2005
  7. Lorenzi, M. (1992) Glucose toxicity in the vascular complications of diabetes: the cellular perspective. Diabetes Metab. Rev. 8, 85-103. https://doi.org/10.1002/dmr.5610080202
  8. Arias, E. B. and Cartee, G. D. (2005) Relationship between protein O-linked glycosylation and insulin- stimulated glucose transport in rat skeletal muscle following calorie restriction or exposure to O-(2-acetamido-2-deoxyd-glucopyranosylidene) amino-N-phenylcarbamate. Acta. Physiol. Scand. 183, 281-289. https://doi.org/10.1111/j.1365-201X.2004.01403.x
  9. King, G. L., Kunisaki, M., Nishio, Y., Inoguchi, T., Shiba, T. and Xia, P. (1996) Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes 45 Suppl 3, S105-108. https://doi.org/10.2337/diabetes.45.1.105
  10. Zachara, N. E., O'Donnell, N., Cheung, W. D., Mercer, J. J., Marth, J. D. and Hart, G. W. (2004) Dynamic OGlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133-30142. https://doi.org/10.1074/jbc.M403773200
  11. Jones, S. P., Zachara, N. E., Ngoh, G. A., Hill, B. G., Teshima, Y., Bhatnagar, A., Hart, G. W. and Marban, E. (2008) Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117, 1172-1182. https://doi.org/10.1161/CIRCULATIONAHA.107.730515
  12. Nigro, J., Osman, N., Dart, A. M. and Little, P. J. (2006) Insulin resistance and atherosclerosis. Endocr. Rev. 27, 242-259. https://doi.org/10.1210/er.2005-0007
  13. McClain, D. A., Paterson, A. J., Roos, M. D., Wei, X. and Kudlow, J. E. (1992) Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Proc. Natl. Acad. Sci. U. S. A. 89, 8150-8154. https://doi.org/10.1073/pnas.89.17.8150
  14. Nerlich, A. G., Sauer, U., Kolm-Litty, V., Wagner, E., Koch, M. and Schleicher, E. D. (1998) Expression of glutamine: fructose-6-phosphate amidotransferase in human tissues: evidence for high variability and distinct regulation in diabetes. Diabetes 47, 170-178. https://doi.org/10.2337/diabetes.47.2.170
  15. Yki-Jarvinen, H. (1998) Toxicity of hyperglycaemia in type 2 diabetes. Diabetes Metab. Rev. 14 Suppl 1, S45-50. https://doi.org/10.1002/(SICI)1099-0895(199809)14:1+3.3.CO;2-Z
  16. Hirano, K., Derkach, D. N., Hirano, M., Nishimura, J. and Kanaide, H. (2003) Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol. Cell. Biochem. 248, 105-114. https://doi.org/10.1023/A:1024180101032
  17. Hirata, K., Kikuchi, A., Sasaki, T., Kuroda, S., Kaibuchi, K., Matsuura, Y., Seki, H., Saida, K. and Takai, Y. (1992) Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J. Biol. Chem. 267, 8719-8722.
  18. Izawa, T., Fukata, Y., Kimura, T., Iwamatsu, A., Dohi, K. and Kaibuchi, K. (2000) Elongation factor-1 alpha is a novel substrate of rho-associated kinase. Biochem. Biophys. Res. Commun. 278, 72-78. https://doi.org/10.1006/bbrc.2000.3772
  19. Eto, M., Ohmori, T., Suzuki, M., Furuya, K. and Morita, F. (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J. Biochem. 118, 1104-1107. https://doi.org/10.1093/oxfordjournals.jbchem.a124993
  20. Somlyo, A. P. and Somlyo, A. V. (2003) $Ca^{2+}$ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
  21. Kawamura, H., Yokote, K., Asaumi, S., Kobayashi, K., Fujimoto, M., Maezawa, Y., Saito, Y. and Mori, S. (2004) High glucose-induced upregulation of osteopontin is mediated via Rho/Rho kinase pathway in cultured rat aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 276-281. https://doi.org/10.1161/01.ATV.0000112012.33770.2a
  22. Kemp, B. K. and Cocks, T. M. (1995) Effects of U46619 on contractions to 5-HT, sumatriptan and methysergide in canine coronary artery and saphenous vein in vitro. Br. J. Pharmacol. 116, 2183-2190. https://doi.org/10.1111/j.1476-5381.1995.tb15052.x
  23. Pang, H., Guo, Z., Su, W., Xie, Z., Eto, M. and Gong, M. C. (2005) RhoA-Rho kinase pathway mediates thrombinand U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 289, C352-360. https://doi.org/10.1152/ajpcell.00111.2005
  24. Karaki, H., Ozaki, H., Hori, M., Mitsui-Saito, M., Amano, K., Harada, K., Miyamoto, S., Nakazawa, H., Won, K. J. and Sato, K. (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev. 49, 157-230.
  25. Kim, B. K., Mitsui, M. and Karaki, H. (1992) The longterm inhibitory effect of a $Ca^{2+}$ channel blocker, nisoldipine, on cytosolic $Ca^{2+}$ and contraction in vascular smooth muscle. Eur. J. Pharmacol. 223, 157-162. https://doi.org/10.1016/0014-2999(92)94834-I
  26. Morishige, K., Shimokawa, H., Eto, Y., Kandabashi, T., Miyata, K., Matsumoto, Y., Hoshijima, M., Kaibuchi, K. and Takeshita, A. (2001) Adenovirus-mediated transfer of dominant-negative rho-kinase induces a regression of coronary arteriosclerosis in pigs in vivo. Arterioscler. Thromb. Vasc. Biol. 21, 548-554. https://doi.org/10.1161/01.ATV.21.4.548
  27. Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994. https://doi.org/10.1038/40187
  28. Barman, S. A., Zhu, S. and White, R. E. (2009) RhoA/Rhokinase signaling: a therapeutic target in pulmonary hypertension. Vasc. Health Risk Manag. 5, 663-671.
  29. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245-248. https://doi.org/10.1126/science.273.5272.245
  30. Jeon, S. B., Kim, G., Kim, J. I., Seok, Y. M., Kim, S. H., Suk, K., Shin, H. M., Lee, Y. H. and Kim, I. K. (2007) Flavone inhibits vascular contraction by decreasing phosphorylation of the myosin phosphatase target subunit. Clin. Exp. Pharmacol. Physiol. 34, 1116-1120.
  31. Gross, B. J., Kraybill, B. C. and Walker, S. (2005) Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588-14589. https://doi.org/10.1021/ja0555217

Cited by

  1. RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy vol.253, pp.5, 2015, https://doi.org/10.1007/s00417-015-2985-3
  2. Understanding the Causes and Implications of Endothelial Metabolic Variation in Cardiovascular Disease through Genome-Scale Metabolic Modeling vol.3, 2016, https://doi.org/10.3389/fcvm.2016.00010
  3. O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter? vol.123, pp.8, 2012, https://doi.org/10.1042/CS20110638
  4. A New Metabolomic Signature in Type-2 Diabetes Mellitus and Its Pathophysiology vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085082
  5. The Role of O-GlcNAcylation in Perivascular Adipose Tissue Dysfunction of Offspring of High-Fat Diet-Fed Rats vol.54, pp.2, 2017, https://doi.org/10.1159/000458422
  6. O-GlcNAcylation under hypoxic conditions and its effects on the blood-retinal barrier in diabetic retinopathy vol.33, pp.3, 2014, https://doi.org/10.3892/ijmm.2013.1597
  7. ProteinO-GlcNAcylation and Cardiovascular (Patho)physiology vol.289, pp.50, 2014, https://doi.org/10.1074/jbc.R114.585984
  8. A Small Molecule That Inhibits OGT Activity in Cells vol.10, pp.6, 2015, https://doi.org/10.1021/acschembio.5b00004