DOI QR코드

DOI QR Code

Effect of Enzymatic Hydrolysis by Proteases on Antioxidant Activity of Chungkukjang

단백질 분해 효소 처리가 청국장의 항산화 활성에 미치는 영향

  • Park, Min-Kyung (Dept. of Human Nutrition and Food Science, Chungwoon University)
  • 박민경 (청운대학교 식품영양학과)
  • Received : 2010.11.15
  • Accepted : 2011.01.24
  • Published : 2011.02.28

Abstract

Chungkukjang and soybean powder were enzymatically hydrolyzed with 20, 100 and 500 mAU of 3 commercially available proteases (alcalase 2.4L, protamex and neutrase 0.8L) at $50^{\circ}C$ for 120 min. The degree of hydrolysis and antioxidant activities of hydrolysates were comparably evaluated. Alcalase and protamex yielded higher content of peptide compared to neutrase in both Chungkukjang and soybean powder hydrolyzed samples. Both Chungkukjang and soybean hydrolysates showed also greater increases of antioxidant activities compared to those prepared with neutrase. The rates of increment of DPPH, ABTS and hydroxyl radical scavenging activities were similar between Chungkukjang and soybean powder hydrolyzates. These results show that alcalase and protamex are not specific for Chungkukjang but enhance its antioxidant activity.

Alcalase, protamex 및 neutrase 효소처리가 청국장의 펩타이드 및 항산화 활성 증가에 미치는 영향을 동일한 조건으로 효소 처리한 대두분말과 비교하였다. 효소 20, 100 및 500 mAU를 $50^{\circ}C$에서 120분간 처리한 결과 청국장과 대두분말 모두에서 alcalase 및 protamex에 의한 펩타이드 생성이 neutrase보다 높게 나타났다. 항산화 활성은 청국장의 경우 alcalase 처리에 의해 DPPH, ABTS 및 hydroxyl radical 소거활성이 효소처리를 하지 않은 대조구와 비교하여 시료량에 따라 각각 37~57%, 59~106% 및 67~83%, protamex 처리에 의해 35~50%, 56~74% 및 52~75% 통계적으로 유의하게 증가하였다. 대두분말을 효소 처리한 시료에서도 유사한 결과를 보여 alcalase 처리에 의해 DPPH, ABTS 및 hydroxyl radical 소거활성이 각각 37~55%, 51~99% 및 67~83%, protamex 처리에 의해 36~44%, 44~66% 및 51~65% 증가하였다. 그러나 두 시료 모두에서 neutrase 처리에 의한 항산화 활성의 유의적 증가는 없었다. 이상의 결과는 alcalase와 protamex가 청국장에 특이적이지는 않으나 펩타이드 생성 및 항산화 활성 증가에 효율적임을 보여주고 있다.

Keywords

References

  1. Berthou J, Migliore-Samour D, Lifchitz A, Delettre J, Floc'h F, Jolles P. 1987. Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. FEBS Lett 218: 55-58. https://doi.org/10.1016/0014-5793(87)81017-7
  2. Kim SH, Lee YJ, Kwon DY. 1999. isolation of angiotensin converting enzyme inhibitor from Doenjang. Korean J Food Sci Technol 31: 848-854.
  3. Shin JI, Yu R, Park SA, Chung DK, Ahn CW, Nam HS, Kim KS, Lee HJ. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem 49: 3004-3009. https://doi.org/10.1021/jf001135r
  4. Rho SJ, Lee JS, Chung YI, Kim YW, Lee HG. 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 44: 490-493. https://doi.org/10.1016/j.procbio.2008.12.017
  5. Cho YJ, Cha WS, Bok SK, Kim MU, Chun SS, Choi UK. 2000. Production and separation of anti-hypertensive peptides during Chunggugjang fermentation with Bacillus subtilis CH-1023. J Korean Soc Agric Chem Biotechnol 43: 247-252.
  6. Matsui T, Yoo HJ, Hwang JS, Lee DS, Kim HB. 2004. Isolation of angiotensin I-converting enzyme inhibitory peptide from Chungkookjang. Korean J Microbiol 40: 355-358.
  7. Kinoshita E, Yamakoshi J, Kikuchi M. 1993. Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci Biotechnol Biochem 57: 1107-1110. https://doi.org/10.1271/bbb.57.1107
  8. Okamoto A, Hanagata H, Kawamura Y, Yanagida F. 1995. Anti-hypertensive substances in fermented soybean, natto. Plant Foods Hum Nutr 47: 39-47. https://doi.org/10.1007/BF01088165
  9. Zhong F, Liu J, Ma J, Shoemaker CF. 2007. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40: 661-667. https://doi.org/10.1016/j.foodres.2006.11.011
  10. Zhong F, Zhang X, Ma J, Shoemaker CF. 2007. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein alcalase hydrolysates. Food Res Int 40: 756-762. https://doi.org/10.1016/j.foodres.2007.01.005
  11. Wu J, Ding X. 2002. Characterization of inhibition and stability of soy protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res Int 35: 367-375. https://doi.org/10.1016/S0963-9969(01)00131-4
  12. Chiang WD, Tsou MJ, Tsai ZY, Tsai TC. 2006. Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chem 98: 725-732. https://doi.org/10.1016/j.foodchem.2005.06.038
  13. Ringseis R, Matthes B, Lehmann V, Becker K, Schops R, Ulbrich-Hofmann R, Eder K. 2005. Peptides and hydrolysates from casein and soy protein modulate the realease of vasoactive substances from human aortic endothelial cells. Biochimica Biophysica Acta 1721: 89-97. https://doi.org/10.1016/j.bbagen.2004.10.005
  14. Var A, Yildirim Y, Onur E, Kuscu NK, Uyanik BS, Goktalay K, Guvenc Y. 2003. Endothelial dysfunction in preeclampsia. Increased homocysteine and decreased nitric oxide levels. Gynecol Obstet Investig 56: 214-221.
  15. Haperen R, Waard M, Deel E, Mees B, Kutryk T, Aken T, Hamming J, Grosveld A, Dunckre DJ, Crom R. 2002. Reduction of blood pressure, plasma cholesterol, and atherosclerosis by elevated endothelial nitric oxide. J Biol Chem 277: 48803-48807. https://doi.org/10.1074/jbc.M209477200
  16. Suetsuna K, Ukeda H, Ochi H. 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11: 128-131. https://doi.org/10.1016/S0955-2863(99)00083-2
  17. Hernandez-Ledesma B, Davalos A, Bartolom B, Amigo L. 2005. Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin identification of active peptides by HPLC-MS/MS. J Agric Food Chem 53: 588-593. https://doi.org/10.1021/jf048626m
  18. Davalos A, Miguel M, Bartolom B, Lopez-Fandino R. 2004. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 67: 1939-1944. https://doi.org/10.4315/0362-028X-67.9.1939
  19. Ishikawa S, Yano Y, Arihara K, Itoh M. 2004. Egg yolk phosvitin inhibits hydroxyl radical formation from the fenton reaction. Biosci Biotechnol Biochem 68: 1324-1331. https://doi.org/10.1271/bbb.68.1324
  20. Chen HM, Muramoto K, Yamauchi F, Nokihara K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44: 2619-2623. https://doi.org/10.1021/jf950833m
  21. Chen HM, Muramoto K, Yamauchi F. 1995. Structural analysis of antioxidative peptides from soybean beta-conglycinin. J Agric Food Chem 43: 574-578. https://doi.org/10.1021/jf00051a004
  22. Takenaka A, Annaka H, Kimura Y, Aoki H, Igarashi K. 2003. Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Biosci Biotehnol Biochem 67: 278-283. https://doi.org/10.1271/bbb.67.278
  23. Gibbs BF, Zougman A, Masse R, Mulligan C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37: 123-131. https://doi.org/10.1016/j.foodres.2003.09.010
  24. Pena-Ramos EA, Xiong YL. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. Food Chem Toxicol 67: 2952-2956.
  25. Adler-Nissen J. 1979a. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27: 1256-1262. https://doi.org/10.1021/jf60226a042
  26. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  27. Arnao MB, Cano A, Acosta M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73: 239-244. https://doi.org/10.1016/S0308-8146(00)00324-1
  28. Obon JM, Castellar MR, Cascales JA, Fernandez-Lopez JA. 2005. Assessment of TEAC method for determining the antioxidant capacity of synthetic red food colorants. Food Res Int 38: 843-845. https://doi.org/10.1016/j.foodres.2005.01.010
  29. Hirayama O, Yida M. 1997. Evaluation of hydroxyl radical- scavenging ability by chemiluminescence. Anal Biochem 251: 297-299. https://doi.org/10.1006/abio.1997.2282
  30. Yildiz G, Demiryurek T. 1998. Ferrous iron-induced chemiluminescence: a method for hydroxyl radical study. J Pharmacol Toxicol Method 39: 179-184. https://doi.org/10.1016/S1056-8719(98)00025-2
  31. Kong XZ, Guo MM, Hua YF, Cao D, Zhang C. 2008. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technol 99: 8873-8879. https://doi.org/10.1016/j.biortech.2008.04.056
  32. Berghofer E, Grzeskowiad B, Mundigler N, Sentall WB, Walcak J. 1998. Antioxidative properties of faba bean-, soybean-, and oat tempeh. Int J Food Nutr 49: 45-54. https://doi.org/10.3109/09637489809086403
  33. Lin CH, Wei YT, Chou CC. 2006. Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol 23: 628-633. https://doi.org/10.1016/j.fm.2005.12.004
  34. Moktan B, Saha J, Sarkar PK. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res Int 41: 586-593. https://doi.org/10.1016/j.foodres.2008.04.003
  35. Esaki H, Onozaki H, Osawa T. 1994. Antioxidative activity of fermented soybean products. In Food Chemicals for Cancer Prevention I: Fruits and Vegetables. Huang MT, ed. American Chemical Society, Washington, DC, USA. p 353-360.

Cited by

  1. Fermentation and Quality Characteristics of Cheonggukjang with Chinese Cabbage vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.659
  2. Optimization of the Addition of Garlic in Cheonggukjang using Response Surface Methodology vol.29, pp.6, 2013, https://doi.org/10.9724/kfcs.2013.29.6.661
  3. Physicochemical and Sensory Characteristics of Hydrolyzed Vegetable Protein Manufactured by Various Enzyme Reaction Order of Defatted Soybean Meal vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1279
  4. 트립신 처리에 따른 적송잎 추출물의 항산화 활성 및 항균 효과 vol.44, pp.3, 2011, https://doi.org/10.5668/jehs.2018.44.3.293