DOI QR코드

DOI QR Code

이형반응기 미생물연료전지의 전기적 특성에 미치는 외부저항의 영향

Effect of External Resistance on Electrical Properties of Two-Chamber type Microbial Fuel Cells

  • 이명은 (경남과학기술대학교 환경공학과, 녹색기술연구소) ;
  • 조세연 (경남과학기술대학교 환경공학과, 녹색기술연구소) ;
  • 정재우 (경남과학기술대학교 환경공학과, 녹색기술연구소) ;
  • 송영채 (한국해양대학교 환경공학과) ;
  • 우정희 (한국해양대학교 환경공학과) ;
  • 유규선 (전주대학교 토목환경공학과) ;
  • 이채영 (수원대학교 토목공학과)
  • Lee, Myoung-Eun (Department of Environmental Engineering, Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Jo, Se-Yeon (Department of Environmental Engineering, Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime University) ;
  • Woo, Jung-Hui (Department of Environmental Engineering, Korea Maritime University) ;
  • Yoo, Kyu-Seon (Department of Civil & Environmental Engineering, Jeonju University) ;
  • Lee, Chae-Young (Department of Civil Engineering, The University of Suwon)
  • 투고 : 2011.02.14
  • 심사 : 2011.03.24
  • 발행 : 2011.03.31

초록

Ferricyanide를 환원제로 사용하는 이형반응기 미생물연료전지 시스템에서 전류밀도, 전력밀도, 쿨롱효율 등의 전기적 특성에 미치는 외부저항의 영향을 규명하고자 하였다. 음극반응기에 미생물을 접종하고 일정한 시간이 경과하면 안정적인 전기가 생산되었으며 $50{\Omega}$의 외부저항에서 0.13~0.16 V 범위의 전압이 발생되었다. 외부저항이 증가함에 따라 전류밀도는 감소하였으며 전력밀도는 일정한 값까지는 급격하게 증가하다가 서서히 감소하는 것으로 나타났다. 외부저항을 단계적으로 감소시키는 반복실험을 수행한 결과, 일정한 범위의 전류밀도까지는 측정값들의 편차가 크지 않았으나 높은 전류밀도 영역에서는 기질소모로 발생하는 농도손실의 영향으로 측정값의 변동성이 매우 크게 나타났다. 전력밀도 및 쿨롱효율은 MFC 시스템의 내부저항($134{\Omega}$)과 가까운 $100{\Omega}$의 외부저항에서 각각 $175.8mW/m^2$과 46.1%의 최대값을 가지는 것으로 나타났다.

The Effects of external resistance on electrical properties such as current density, power density and coulombic efficiency were investigated in two-chamber type MFCs using a ferricyanide as reducing agent. A stable electricity was produced when a constant time elapsed after innoculation of mixed cultures into the anode compartment; voltages from 0.13 to 0.16 V was measured at $50{\Omega}$ of external resistance. When the external resistance was increased, the current density decreased and the power density rapidly increased and then slowly decreased. Big variation of electrical properties was observed in high-current density region due to the concentration loss related with substrate consumption in repeated experiments changing the external resistance. The maximum power density ($175.8mW/m^2$) and coulombic efficiency (46.1%) were obtained at $100{\Omega}$ of the external resistance which is nearest with the internal resistance ($134{\Omega}$) of MFC system.

키워드

참고문헌

  1. 송영채, 우정희, 유규선, "미생물연료전지의 재료 : 전극 및 분리막, 집전체," 대한환경공학회지, 31(9), 693-704(2009).
  2. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K., "Microbial fuel cells : methodology and technology," Environ. Sci. Technol., 40, 5181-5192(2006). https://doi.org/10.1021/es0605016
  3. Rabaey, K. and Verstraete, W., "Microbial fuel cells : novel biotechnology for energy generation," Trends Biotechnol., 23, 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  4. Logan, B. E., "Microbial fuel cells," Wiley-Interscience (2007).
  5. Song, Y. C., Yoo, K. S. and Lee S. K., "Surface floating, air cathode, microbial fuel cell with horizontal flow for continuous power production from wastewater," J. Power Sour., 195, 6478-6482(2010). https://doi.org/10.1016/j.jpowsour.2010.04.041
  6. Logan, B. E. and Regan, J. M., "Electricity-producing bacterial communities in microbial fuel cells," Trends in Microbiol., 14, 512-518(2006). https://doi.org/10.1016/j.tim.2006.10.003
  7. Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C. and Jones-Meehan, J. M., "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10," Environ. Sci. Technol., 40, 2629-2634(2006). https://doi.org/10.1021/es052254w
  8. Cheng, S. and Logan, B. E., "Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells," Electrochemistry Communications, 9, 492-496(2007). https://doi.org/10.1016/j.elecom.2006.10.023
  9. Fan, Y., Hu, H. and Liu, H., "Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration," J. Power Sour., 171, 348-354(2007). https://doi.org/10.1016/j.jpowsour.2007.06.220
  10. Rosenbaum, M., Zhao, F., Schroder, U. and Scholz, F., "Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuel cell," Angew. Che. Int. Ed., 455, 6658-6661(2006).
  11. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Pro. Biochem., 39, 1007-1012(2004). https://doi.org/10.1016/S0032-9592(03)00203-6
  12. Liu, H. Ramnarayanan, R. and Logan, B. E., "Production of electricity during wastewater treatment using a single chamber microbial fuel cell," Environ. Sci. Technol., 38, 2281-2285(2004). https://doi.org/10.1021/es034923g
  13. Cheng, S., Liu, H. and Logan, B. E., "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells," Environ. Sci. Technol., 40, 364-369(2006). https://doi.org/10.1021/es0512071
  14. Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P. and Herrmann, I., "Application of pyrolyzed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materias in microbial fuel cells," Electrochem. Communications, 17, 1405-1410(2005).
  15. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. and Verstraete, W., "Biofuel cells select for microbial consortia that self-mediate electron transfer," Appl. Environ. Microbiol., 70, 5373-5382(2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  16. Min, B. K., Cheng, S. A. and Logan, B. E., "Electricity generation using membrane and salt bridge microbial fuel cells," Water Res., 39, 1675-1686(2005). https://doi.org/10.1016/j.watres.2005.02.002
  17. Biffinger, J. C., Ray, R., Little, B. and Ringeisen, B. R., "Diversifying biological fuel cell designs by use of nanoporous filters," Environ. Sci. Technol., 41, 1444-1449 (2007). https://doi.org/10.1021/es061634u
  18. APHA, AWWA, WEF, Standard methods for the examination of water and wastewater, 18th ed., Greenberg, A. E., Clesceri, L. S. and Eaton, A. D.(Eds.), pp. 5-6-5-7(1992).
  19. Liang, P., Huang, X., Fan, M. Z., Cao, X. X. and Wang, C., "Composition and distribution of internal resistance in three types of microbial fuel cells," Appl. Microbiol. Biotechnol., 77, 551-558(2007). https://doi.org/10.1007/s00253-007-1193-4
  20. Alterman, P., Versichele, M., Marzorati, M., Boon, N. and Verstraete, W., "Loading rate and external resistance control the electricity generation of microbial fue cells with different three-dimensional anodes," Bioresour. Technol., 99, 8895-8902(2008). https://doi.org/10.1016/j.biortech.2008.04.061
  21. Manohar, A. K., Breschger, O., Nealson, K. H. and Mansfeld, F., "The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell," Bioelectrochem., 72, 149-154(2008). https://doi.org/10.1016/j.bioelechem.2008.01.004