DOI QR코드

DOI QR Code

호기성 입상화 슬러지를 이용한 SBR 운전의 동력학적 해석 및 설계분석

Bio-kinetic and Design Analysis of a Sequencing Batch Reactor by Aerobic Granular Sludge

  • 투고 : 2010.10.01
  • 심사 : 2011.04.27
  • 발행 : 2011.04.29

초록

고분자 응집제를 이용하여 짧은 시간에 형성된 입상형태의 슬러지를 연속회분식 장치에 주입하여 미생물의 호기성 입상화의 특성을 향상시키고, 제조한 입상화 슬러지를 하수에 적용하여 유기물제거에 대한 운전인자를 도출하였다. 유입하수 COD 63~72 mg/L에 대한 유기물 제거속도 계수 k는 $10.161d^{-1}$로 일반적 활성슬러지 공법의 k값 $5{\sim}8d^{-1}$보다 효과적으로 나타났으며, 산소이용에 대한 a', b' 값은 각각 0.87 mg $O_2/mg$ $COD_r$, 0.11 mg $O_2/mg$ MLVSS d이었다. 슬러지 합성계수와 자산 화계수는 각각 0.45 mg VSS/mg $COD_r$과 0.05 mg VSS/mg MLVSS d로 일반적 활성슬러지 공법에 비해, 자산화 계수는 비교적 적은 값으로 나타나므로 미생물의 사멸율은 낮은 것을 알 수 있었다.

In the present work, the aerobic particle's characteristics were enhanced. A polymer was used to make aerobic granular sludge in short period of time. And operation parameters were calculated for organic matter removal in domestic wastewater using a sequencing batch reactor (SBR). The experiment for sewage (Influent concentration of 63~72 mg COD/L) by using mature aerobic granular sludge showed the organic matter removal rate k and oxygen utilization coefficient a', b' were $10.161d^{-1}$ and 0.87 mg $O_2/mg$ $COD_r$, 0.11 mg $O_2/mg$ MLVSS d respectively. Therefore, it was more effective than K value $5{\sim}8d^{-1}$ of conventional activated sludge process. The sludge synthetic value and sludge auto-oxydation value were 0.45 mg VSS/mg $COD_r$ and 0.05 mg VSS/mg MLVSS d respectively. Consequently, mortality rates of microorganisms was lower than conventional activated sludge process.

키워드

참고문헌

  1. Mosbach, K. and Mosbach, R., "Entrapment of Enzymes and Microorganisms in Synthetic Cross-linked Polymers and their Application in Column Techniques," Acta Chem. Scand. 20., 10, 2807-2810(1966). https://doi.org/10.3891/acta.chem.scand.20-2807
  2. Barber, J. B. and Veenstra, J. N., "Evaluation of biological sludge properties influencing volume reduction," J. Water Pollut. Control. Fed., 58, 149-156(1986).
  3. Higgins, M. J. and Novak, J. T., "Dewatering and settling of activated sludge : The case for using cation analysis," Water Environ. Res., 69, 225-232(1997). https://doi.org/10.2175/106143097X125380
  4. Yang, S. F., Liu, Q. S., Tay, J. H. and Liu, Y., "Growth kinetics of aerobic granules developed in sequencing batch reactors," Lett. Appl. Microbiol., 38, 106-112(2004). https://doi.org/10.1111/j.1472-765X.2003.01452.x
  5. Beun, J. J., Hendriks, A., Morgenroth, E., Wilderer, P. A. and Heijnen, J. J., "Aerobic granulation in a sequencing batch reactor," Water Res., 33, 2283-2290(1999). https://doi.org/10.1016/S0043-1354(98)00463-1
  6. Schwarzenbeck, N., Erley, R., and Wilderer, P. A., "Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter," Water Sci. Technol., 49, 21-46(2004).
  7. Zheng, Y. M., Yu, H. Q. and Sheng, G. P., "Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor," Proc. Biochem., 40, 645-650 (2005). https://doi.org/10.1016/j.procbio.2004.01.056
  8. Liu, Y., Wang, Z. W., Qin, L., Liu, Y. Q. and Tay, J. H., "Selection pressure-driven aerobic granulation in a sequencing batch reactor," Appl. Microbiol. Biotechnol., 67, 26-32(2005). https://doi.org/10.1007/s00253-004-1820-2
  9. 조용덕, 이상화, 김영일, "무산소 활성오니공정을 이용한 판지공장 폐수처리의 동력학적 해석 및 설계분석," 대한환경공학회지, 28(10), 1090-1097(2006).
  10. 배우근, 배재호, 양지원, 생물환경공학, 동화기술, pp. 345-716(2002).
  11. 이봉섭, 최성우, "연속회분식 장치에서 응집제를 이용한 호기성 입상슬러지 생성 및 특성", 대한환경공학회지, 31(12), 1143-1150(2009).
  12. Liu, L., Wang, Z., Yao, J., Sun, X. and Cai, W., "Investigation on the formation and kinetics of blucose-fed aerobic granular sludge," Enzyme Microb. Technol., 36, 712-716(2005). https://doi.org/10.1016/j.enzmictec.2004.12.024
  13. Qin, L., Tay, J. H. and Liu, Y., "Selection pressure is a driving force of aerobic granulation in sequencing batch reactors," Proc. Biochem., 39, 579-584(2004). https://doi.org/10.1016/S0032-9592(03)00125-0
  14. 환경부, 수질환경오염공정시험법, 환경부고시 제2009-9호 (2009).
  15. APHA, Standard Methods for the Examination of Water and Wastewater, 20th edition, American Public Health Association, Washington DC. USA(1998).
  16. Tay, J. H., Liu, Q. S. and Liu, Y., "The effect of shear force on the formation, structure and metabolism of aerobic granules," Appl. Microbiol. Biotechnol., 57, 227-233(2001). https://doi.org/10.1007/s002530100766
  17. Dorota, K., Ewa, K. and Drzewicki, A., "$BOD_5$ and COD removal and sludge production in SBR working with or without anoxic phase," Bioresour. Technol., 98, 1426-1432 (2007). https://doi.org/10.1016/j.biortech.2006.05.021
  18. Rusten, B. and Eliassen, H., "Sequencing batch reactors for nutrient removal at small wastewater treatment plants," Water Sci. Technol., 28, 233-242(1993).
  19. Tischler, L. F. and Eckenfelder, W. W., "Linear substrate removal in the activated sludge process," Advances in Water Pollution Research. Pergamon, Oxford(1969).
  20. 조영일, 이수구, 선용호, 박철휘, 권재혁, 산업폐수처리공학, 동화기술, pp. 235-237(2002).
  21. Domey, W. R., "Design parameters and performance of biological systems for textile plant effluent," Proc., 28th Prudue Ind., Waste Conf., 438(1973).