DOI QR코드

DOI QR Code

Characterization of Algal-Bacterial Ecological Interaction and Nutrients Removal Under Municipal Wastewater Condition

실제 하수조건에서 조류-세균 복합군집의 생태적 상호작용 및 영양염류 제거 특성 규명

  • Lee, Jang-Ho (School of Civil and Environmental Engineering, Yonsei University) ;
  • Park, Joon-Hong (School of Civil and Environmental Engineering, Yonsei University)
  • 이장호 (연세대학교 사회환경시스템공학부) ;
  • 박준홍 (연세대학교 사회환경시스템공학부)
  • Received : 2011.02.25
  • Accepted : 2011.05.23
  • Published : 2011.05.31

Abstract

Algal biomass cultivated by wastewater is potentially useful resource for biodiesel production. However, little is known about algal nutrient metabolism and microbial interaction with bacteria under real municipal wastewater condition. In this work, we characterized nitrogen and phosphorus removals of municipal wastewater by a representative wastewater-growing algal population. Ankistrodesmus gracilis SAG 278-2, and analyzed its ecological interaction with wastewater bacterial communities. Compared to wastewater sludge itself, algal-bacterial co-culture improved nutrient removal. According to bacterial community analysis with 16S rRNA genes, a selective and dominant growth of a Unclassified Alcaligenaceae population resulted from algal growth in the algal-bacterial co-culture. The selectively stimulated bacterial population is phylogenetically close to Alcaligenes faecalis subsp. 5659-H, which is known to be co-present interact with algae in aquatic environment. These findings suggest that algal growth/metabolism may have effects on selection of a specific bacterial population in algal-bacterial co-cultures that can efficiently remove nutrients from municipal wastewater.

하수를 이용해서 배양된 조류는 바이오디젤 생산에 유용한 자원이다. 그러나 실제 하수에서 조류의 영양염류 신진대사와 하수 세균과의 상호작용에 관한 연구는 미흡하다. 본 연구에서는 하수로 배양되는 대표적 조류균주인 Ankistrodesmus gracilis SAG 278-2에 의한 하수 내 질소, 인 제거 거동을 평가하였고, 조류와 상호작용하는 하수 내의 세균 군집을 분석하였다. 하수 슬러지 세균 군집과 비교하였을 때, 조류-세균 복합 군집은 하수 내보다 높은 영양염류 제거를 보였다. 16S rRNA 유전자 분석 결과, 조류-세균 군집에서 조류가 성장함에 따라 Unclassified Alcaligenaceae 세균이 선택적으로 우점됨을 알 수 있었고, 조류에 의해서 선택적으로 우점화된 하수세균은 자연 수질 환경에서 조류와 공생적으로 상호작용 하는 것으로 알려진 Alcaligenes faecalis subsp. 5659-H와 계통학적으로 가까운 것으로 밝혀졌다. 본 연구의 결과, 하수 내의 높은 영양염류 제거를 보이는 조류-세균 복합 군집에서의 조류의 성장 및 신진대사가 특정 세균의 분포에 영향을 주는 것을 알 수 있었다.

Keywords

References

  1. International Energy Agency Homepage, http://www.worldenergyoutlook.org, September(2010).
  2. Chisti, Y., "Biodiesel from microalgae," Biotechnol. Adv., 25(3), 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  3. 김한욱, 이우성, 이철균, "미세조류를 이용한 질소제거 장치의 크기," 한국생물공학회지, 19(3), 236-240(2004).
  4. 노성희, 김선일, "폐석회를 이용한 폐수 중 인 제거 특성," 응용화학, 6(2), 735-738(2002).
  5. Laliberte, G., Proulx, D., Pauw, N. and Nouee, J. L., "Algal technology in wastewater treatment," Ergenisse Limnol., 42, 283-302(1994).
  6. Nurdogan, Y. and Oswald, W. J., "Enhanced nutrient removal in high-rate ponds," Water Sci Technol., 31(12), 33-43 (1995). https://doi.org/10.1016/0273-1223(95)00490-E
  7. Oswald, W. J., "My sixty years in applied algology," J. Appl. Phycol., 15(2-3), 99-106(2003). https://doi.org/10.1023/A:1023871903434
  8. Fuhrman, J. A., Horrigan, S. G. and Capone, D. G., "Use of 13N as tracer for bacterial and algal uptake of ammonium from seawater," Mar. Ecol. Prog., 45(3), 271-278(1988). https://doi.org/10.3354/meps045271
  9. Rhee, G.-Y., "Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake," Limnol. Oceanogr., 23(1), 10-25(1978). https://doi.org/10.4319/lo.1978.23.1.0010
  10. Munoz, R. and Guieysse, B., "Algal-bacterial processes for the treatment of hazardous contaminants: A review," Water Res., 40(15), 2799-2815(2006). https://doi.org/10.1016/j.watres.2006.06.011
  11. Munoz, R. and Guieysse, B., "Algal-bacterial processes for the treatment of hazardous contaminants: A review," Water Res., 40(15), 2799-2815(2006). https://doi.org/10.1016/j.watres.2006.06.011
  12. Piorreck, M., Baasch, K., and Pohl, P., "Biomass production, total protein, clorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes," Phytochemistry, 23(2), 207-216(1984). https://doi.org/10.1016/S0031-9422(00)80304-0
  13. Macedo, C. F. and Pinto-Coelho, R. M., "Nutritional status response of Daphnia laevis and Moina micrura from a tropical rhnirvoir to differhnt algal aphts: Scenedhnmus quadricauda and Ank rerodenmus gracilis," Braz. J. Biol., 61(4), 555-562(2001). https://doi.org/10.1590/S1519-69842001000400005
  14. 이장호, 박준홍, "실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석," 대한환경공학회지, 32(4), 333-340(2010).
  15. Sartory, D. P. and Grobbllaar, J. U., "Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis," Hydrobiologia., 114(3), 177-187(1984). https://doi.org/10.1007/BF00031869
  16. Li, X., Xu, H. and Wu, Q., "Large-Scale Biodiesel Production From Microalga Chlorella protothecoides Through Heterotrophic Cultivation in Bioreactors," Biotechnol. Bioeng., 98(4), 764-771(2007). https://doi.org/10.1002/bit.21489
  17. Reasoner, D. J. and Geldreich, E. E., "A new medium for the enumeration and subculture of bacteria from potable water," Appl. Environ. Microb., 49(1), 1-7(1985).
  18. Koch, A. L., "Growth Measurement," Methods for General and Molecular Bacteriology, Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R. (Eds.), American Society for Microbiology, Washington D.C., pp. 254-257(1994).
  19. Han, I., Congeevaram, S. and Park, J., "Impoved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion," Water Sci. Technol., 59(2), 267-271(2009). https://doi.org/10.2166/wst.2009.856
  20. Suzuki, M. T. and Giovannoni, S. J., "Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR," Appl. Environ. Microbiol., 62(2), 625-630(1996).
  21. 기동원, 박준홍, 이재진, 노백호, "현장 측정된 토양미생물종 다양성과 생태자연도 등급 자료 간의 통계적 상관관계 평가와 토양생태의 질 산정방안 제안," 대한토목학회 논문집, 27(6B), 703-710(2007).
  22. Ben-Amotz, A., Tornabene, T, G. and Thomas, W, H., "Chemical profile of selected species of microalgae with emphasis on lipids," J. Phycol, 21(1), 72-81(1985).
  23. Daranas, A. H., Norte, M. and Fernandez, J. J., "Toxic marine microalgae," Toxicon., 39(8), 1101-1132(2001). https://doi.org/10.1016/S0041-0101(00)00255-5
  24. Havskum, H., Thingstad, T. F., Scharek, R., Peters, F., Berdalet, E., Sala, M. M., Alcaraz, M., Bangsholt, J. C., Zwifel, U. L., Hagstrom, A., Perez, M. and Dotan, J. R., "Silicate and labile DOC interfere in structuring the microbial food web via algal-bacterial competition for minetal nutrients: Results of a mesocosm experiment," Limnol. Oceanogr., 48(1), 129-140(2003). https://doi.org/10.4319/lo.2003.48.1.0129
  25. Tchobanoglous, G., Burton, F. L., and Stensel, H. D., Wastewater Engineering, 4th ed., McGraw-Hill, New York, pp. 1064-1066(2004).
  26. Berg, K. A., Lyra, C., Sivonen K., Paulin, L., Suomalainen, S., Tuomi, P. and Rapala, J., "High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms," The ISME J., 3, 314-325(2009). https://doi.org/10.1038/ismej.2008.110
  27. Wiese, J., Thiel, V., Nagal, K., Staufenberger, T. and Imhoff, J. F., "Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic sea," Mar Biotechnol., 11(2), 287-300(2009). https://doi.org/10.1007/s10126-008-9143-4