DOI QR코드

DOI QR Code

연료 및 공기 노즐 위치와 공기 유량 변화에 따른 MILD 연소 특성에 관한 해석적 연구

A Numerical Study of the Combustion Characteristics in a MILD Combustor with the Change of the Fuel and Air Nozzle Position and Air Mass Flow Rate

  • Kim, Tae-Kwon (Mechanical and Automotive Engineering Department, Keimyung University) ;
  • Shim, Sung-Hoon (Korea Institute of Machinery & Materials) ;
  • Chang, Huyk-Sang (Environmental Engineering Department, Youngnam University) ;
  • Ha, Ji-Soo (Energy.Environmental Science Department, Keimyung University)
  • 투고 : 2011.02.05
  • 심사 : 2011.05.27
  • 발행 : 2011.05.31

초록

연소과정 중에 발생하는 질소산화물을 저감하는 기술인 MILD 연소에 대하여 연료노즐과 공기노즐의 위치와 공기유량을 변화하면서 나타나는 연소특성을 수치해석을 통하여 연구하였다. 본 연구의 MILD 연소로는 연료노즐과 공기 노즐 사이에 연소배기가스의 배출구가 있는 연소로를 이용하였다. 공기노즐은 8개, 연료노즐은 4개를 사용하였다. 연료노즐이 연소로 중앙 부근에 위치한 연소로의 경우에 공기유량이 적을 때는 연소반응대가 연료노즐에서부터 연소로 벽면으로 치우치게 되지만 공기유량이 커지면 연소반응대가 연료노즐 측에서 시작하여 연료노즐 상부로 형성된다. 공기노즐이 연소로 중앙부분에 위치한 경우에 공기유량이 적을 때는 연소반응대가 공기노즐 부근에서 시작하여 연소로 벽면으로 치우치지만 공기유량이 증가하면 연소반응대가 연료노즐 측으로 옮겨가게 된다. 두 가지 경우 모두 공기유량이 증가하면 연소반응대에서 최대온도가 증가하고 따라서 배기가스에서의 NOx 농도가 증가한다. 두 가지 노즐 위치에서의 NOx 생성을 비교해 보면 공기노즐이 연소로 중앙에 위치한 경우가 연료노즐이 연소로 중앙에 위치한 경우보다 NOx 농도가 현저히 적음을 알 수 있었다. 본 연구의 결과로부터 NOx 저감과 연료의 미연가스 배출을 감안할 때 공기노즐이 연소로 중앙에 위치하고 이론공기량에 해당하는 공기량을 분출할 때 NOx 생성에 가장 효과적임을 알 수 있었다.

A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the change of fuel and air nozzle position and air mass flow rate. For the case with the fuel nozzle located near center position of combustor, the reaction zone started at the fuel nozzle and had inclined shape toward combustor wall when the air mass flow rate was relatively smaller. On the other hand, the end of reaction zone moved toward center of combustor from combustor wall when the air flow rate was relatively larger. For the case with the air nozzle located near center position of combustor, the reaction zone started at the fuel nozzle and had inclined shape toward combustor wall when the air mass flow rate was relatively small, which was similar as the previous case with smaller air mass flow rate. On the other hand, the end of reaction zone moved toward combustor wall when the air flow rate was relatively larger. The maximum temperature increased as the air mass flow rate increasing for both cases, and the concentration of thermal NOx increased also from the previous reason of temperature characteristics. The concentration of NOx for the case with the air nozzle located near center position of combustor was considerably smaller than that for the case with the fuel nozzle located near center position of combustor. From the present study, the case with the air nozzle located near center position of combustor and theoretical air flow rate was the most effective condition for the NOx reduction and perfect combustion.

키워드

참고문헌

  1. Wuuning, J. A. and Wunning, J. G., "Flameless oxidation to reduce thermal NO-formation," Prog. Energy Combust. Sci., 23, 81-97(1997). https://doi.org/10.1016/S0360-1285(97)00006-3
  2. Katsuki, M. and Hasegawa, T., "The science of technology of combustion in highly preheated air," 27 Symp (Int) Combustion, pp. 3135-3146(1998).
  3. Cavaliere, A., De Joannon, M. and Ragucci, R., "Mild combustion of high temperature reactants," 2nd International Symposium on High Temperature Air Combustion(1999).
  4. Plessing, T., Peters, N. and Wunning, J. G., "Laseroptical investigation of highly preheated combustion with strong exxxhaust gas recirculation," 27 Symp (Int) Combustion, pp. 3197-3204(1998).
  5. Frazan, H., Maringo, G. J., Riggs, J. D., Yagiela, A. S. and Newell, R. J., "Reburning with Powder River Basin Coal to Achieve ${SO_{2}}$ an ${NO_{x}}$ Compliance," Proc. of the Power - Gen Sixth International Conference, Dallas, pp. 175-187(1993).
  6. Ha, J. S., Kim, T. K. and Shim, S. H., "A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor," Kor. Soc. Environ. Eng., 32(6), 587-592(2010).
  7. Launder, B. E. and Spalding, D. B., "The Numerical Computation of Turbulent Flows. Computer methods in Applied Mechanics and Engineering," pp. 269-289(1974).
  8. Magnussen, B. F. and Hjertager, B. H., "On mathematical model of turbulent combustion with special emphasis on soot formation and combustion," In 16th Symp. on Combustion (1976).
  9. Liu, F., Becker, H. A. and Bindar, Y., "A comparative modeling in gas-fired furnaces using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models," Int. J. Heat Mass Transfer, 41, 3357-3371(1998). https://doi.org/10.1016/S0017-9310(98)00098-2
  10. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow," 126-131(1980).
  11. Hanson, R. K. and Salimian, "Survey of rate constants in H/N/O systems," Combust. Chem., p. 361(1984).

피인용 문헌

  1. A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle vol.22, pp.4, 2013, https://doi.org/10.5855/ENERGY.2013.22.4.413
  2. A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect vol.35, pp.12, 2013, https://doi.org/10.4491/KSEE.2013.35.12.967
  3. Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor vol.18, pp.2, 2014, https://doi.org/10.7842/kigas.2014.18.2.21
  4. A study on the flow characteristics in a MILD combustion waste incinerator with the change of flue gas recirculation inlet location vol.23, pp.3, 2014, https://doi.org/10.5855/ENERGY.2014.23.3.051
  5. A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles vol.25, pp.4, 2016, https://doi.org/10.5855/ENERGY.2016.25.4.152