DOI QR코드

DOI QR Code

확률적 정량모델을 이용한 토양에서의 바이러스 저감 평가

Assessment of Viral Attenuation in Soil Using Probabilistic Quantitative Model

  • 박정안 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김재현 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 이인 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김성배 (서울대학교 지역시스템공학과.농업생명과학연구원)
  • Park, Jeong-Ann (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Jae-Hyun (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Lee, In (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering.Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2011.05.31
  • 심사 : 2011.07.26
  • 발행 : 2011.07.29

초록

본 연구의 목적은 미국 환경보호청에서 개발한 확률적 정량모델인 VIRULO 모델의 구성과 특성을 분석하는 것이다. 이 모델은 몬테카를로 방법을 이용하여 수리지질학적 차단벽으로써 토양의 바이러스 저감능을 평가할 수 있는 모델이다. 모델에 사용된 지배방정식은 크게 불포화 지역에서의 물의 흐름식과 바이러스의 이동식으로 구성되어 있다. 사용되는 파라미터들 중, 물의 흐름과 관련된 파라미터는 11종류의 토양에 대하여 UNSODA 데이터베이스로부터 얻어진 것 들이며, 바이러스와 관련된 파라미터 값들은 다섯 종류의 바이러스에 대하여 문헌조사를 통해 정리된 것이다. 모델은 목표로 하는 바이러스 저감 역치값과 특정 조건에서 몬테카를로 모사를 통해 얻어진 토양의 바이러스 저감인자를 비교하여, 목표로 하는 바이러스 저감 역치값에 도달하지 못하는 확률을 결정한다. 그리고, 몬테카를로 모사횟수와 목표 역치값에 도달하지 못한 횟수를 결과물로 제시한다. 11개의 USDA 토양을 대상으로 바이러스 저감을 평가한 결과, 양질사토와 모래의 바이러스 저감능이 점토나 미사 계열의 토양에 비하여 상당히 떨어지는 것으로 평가되었다. 5종의 바이러스를 대상으로 저감을 비교한 결과, 바이러스 간에 저감 정도에 차이가 있는 것으로 나타났으며, 그 중 폴리오바이러스의 저감 정도가 가장 큰 것으로 분석되었다. 그리고, 토양 함수량이 증가함에 따라 토양의 바이러스 저감능이 급격하게 감소하였으며, 토양의 깊이가 증가함에 따라 바이러스 저감능이 비선형적으로 증가하였다. 본 연구에 의하면, VIRULO 모델은 지중환경에서의 바이러스 위해성 평가에 사용될 수 있는 유용한 스크리닝 도구로 판단된다.

The objective of this study was to analyze VIRULO model, a probabilistic quantitative model, which had been developed by US Environmental Protection Agency. The model could assess the viral attenuation capacity of soil as hydrogeologic barrier using Monte Carlo simulation. The governing equations used in the model were composed of unsaturated flow equations and viral transport equations. Among the model parameters, those related to water flow for 11 soil types were from UNDODA data, and those related to 5 virus species were from the literatures. The model compared the attenuation factor with threshold of attenuation to determine the probability of failure and presented the exceedances and Monte Carlo runs as output. The analysis indicated that among 11 USDA soil types, the viral attenuation capacity of loamy sand and sand were far lower than those of clay and silt soils. Also, there were differences in the attenuation in soil among 5 viruses with poliovirus showing the highest attenuation. The viral attenuation capacity of soil decreased sharply with increasing soil water content and increased nonlinearly with increasing soil barrier length. This study indicates that VIRULO model could be considered as a useful screening tool for viral risk assessment in subsurface environment.

키워드

참고문헌

  1. Souter, P. F., Cruickshank, G. D., Tankerville, M. Z. Keswick, B. H., Ellis, B. D., Langworthy, D. E., Metz, K. A., Appleby, M. R., Hamilton, N., Jones, A. L. and Perry, J. D., "Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water," J. Water Health, 1, 73-84(2003).
  2. Schijven, J. F. and Hassanizadeh, S. M., "Removal of viruses by soil passage: overview of modeling, processes, and parameters," Crit. Rev. Environ. Sci. Technol., 30, 49-127 (2000). https://doi.org/10.1080/10643380091184174
  3. Van Cuyk, S. and Siegrist, R. L., "Virus removal within a soil infiltration zone as affected by effluent composition, application, and soil type," Water Res., 41, 699-709(1984).
  4. Nicosia, L. A., Rose, J. B., Stark, L. and Stewart, M. T., "A field study of virus removal in septic tank drainfields," J. Environ. Qual., 30, 1933-1939(2001). https://doi.org/10.2134/jeq2001.1933
  5. Gerba, C. P., Powelson, D. K., Yahya, M. T., Wilson, L. G. and Amy, G. L., "Fate of viruses in treated sewage effluent during soil aquifer treatment designed for wastewater reclamation and reuse," Water Sci. Technol., 24(9), 95-102 (1991).
  6. Quanrud, D. M., Carroll, S. M., Gerba, C. P. and Arnold, R. G., "Virus removal during simulated soil-aquifer treatment," Water Res., 37, 753-762(2003). https://doi.org/10.1016/S0043-1354(02)00393-7
  7. Bradford, S. A., Tadassa, Y. F. and Jin, Y., "Transport of coliphage in the presence and absence of manure suspension," J. Environ. Qual., 35, 1692-1701(2006). https://doi.org/10.2134/jeq2006.0036
  8. Horswell, J., Hewitt., J., Prosser, J., Van Schaik., A., Croucher, D., Macdonald., C., Burford, P., Susarla, P., Bickers, P. and Speir, T., "Mobility and survival of Salmonella typhimurium and human adenovirus from spiked sewage sludge applied to soil column," J. Appl. Microbiol., 108, 104-114(2010). https://doi.org/10.1111/j.1365-2672.2009.04416.x
  9. Keswick, B. H. and Gerba, C. P., "Viruses in groundwater," Environ. Sci. Technol., 14, 1290-1297(2000).
  10. Goyal, S. M., Keswick, B. H. and Gerba, C. P., "Viruses in groundwater beneath sewage irrigated cropland," Water Res., 18, 299-302(1984). https://doi.org/10.1016/0043-1354(84)90103-9
  11. 환경부, 환경백서(2007).
  12. Yates, M. and Ouyang, Y., "VIRTUS, a model of virus transport in unsaturated soils," Appl. Environ. Microbiol., 58, 1609-1616(1992).
  13. Azadpour-Keeley, A. and Ward, C. H., "Transport and survival of viruses in the subsurface-processes, experiments, and simulation models," Remediation J., 15(3), 23-49(2005). https://doi.org/10.1002/rem.20048
  14. Faulkner, B. R., Lyon, W. G., Khan, F. A. and Chattopadhyay, S., Predicting attenuation of viruses during percolation in soils: 1. probabilistic model, EPA/600/R-02/051a, US Environmental Protection Agency(2002).
  15. Lyon, W. G., Faulkner, B. R., Khan, F. A., Chattopadhyay, S. and Cruz, J. B., Predicting attenuation of viruses during percolation in soils: 2. user's guide to the Virulo 1.0 computer model, EPA/600/R-02/051b, US Environmental Protection Agency(2002).
  16. Faulkner, B. R., Lyon, W. G., Khan, F. A. and Chattopadhyay, S., "Modeling leaching of viruses by the Monte Carlo method," Water Res., 37, 4719-4729(2003). https://doi.org/10.1016/S0043-1354(03)00419-6
  17. Leij, F. J., Alves, W. J. and van Genuchten, R., The UNSODA unsaturated hydraulic database: user's manual version 1.0, EPA/600/R-96/095, US Environmental Protection Agency(1996).
  18. Goyal, S. M. and Gerba, C. P., "Comparative adsorption of human enteroviruses, simian rotavirus, and selected bacteriophages to soils," Appl. Environ. Microbiol., 38, 241-247 (1980).
  19. Funderburg, S. W., Moore, B. E., Sagik, B. P. and Sorber, C. A., "Viral transport through soil columns under conditions of saturated flow," Water Res., 15, 703-711(1981). https://doi.org/10.1016/0043-1354(81)90163-9
  20. Sobsey, M. D., Dean, C. H., Knuckles, M. E. and Wagner, R. A., "Interactions and survival of enteric viruses in soil materials," Appl. Environ. Microbiol., 40, 92-101(1980).
  21. Ryan, J. N., Harvey, R. W., Metge, D., Elimelech, M., Navigato, T., and Pieper, A. P., "Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz sand," Environ. Sci. Technol., 36, 2403-2413(2002). https://doi.org/10.1021/es011285y
  22. Zhuang, J. and Jin, Y., "Virus retention and transport through Al oxide-coated sand columns: effects of ionic strength and composition," J. Contamin. Hydrol., 60, 193-209(2003). https://doi.org/10.1016/S0169-7722(02)00087-6
  23. Chu, Y., Jin Y., Baumann, T. and Yates, M. V., "Effect of soil properties on saturated and unsaturated virus transport through columns," J. Environ. Qual., 32, 2017-2025(2003). https://doi.org/10.2134/jeq2003.2017
  24. Pang, L., Nowostawska, U., Ryan, J. N., Williamson, W. M., Walshe, G., and Hunter, K. A., "Modifying the surface charge of pathogen-sized microspheres for studying pathogen transport in groundwater," J. Environ. Qual., 38, 2210-2217 (2009). https://doi.org/10.2134/jeq2008.0451
  25. Michen, B. and Graule, T., "Isoelectric points of viruses," J. Appl. Micro., 109, 388-397(2010).
  26. Bitton, G., Pancorbo, O. C. and Farrah, S. R., "Virus transport and survival after land application of sewage sludge," Appl. Environ. Microbiol., 47, 905-909(1984).
  27. Sobsey, M. D., Shields, P. A., Hauchman, F. H., Hazard, R. L. and Caton III, L. W., "Survival and transport of hepatitis A virus in soils, groundwater, and wastewater," Water Sci. Technol., 18(10), 97-106(1986).
  28. Lance, J. C. and Gerba, C. P., "Virus movement in soil during saturated and unsaturated flow," Appl. Environ. Microbiol., 47, 335-337(1980).
  29. Powelson, D. K. and Gerba, C. P., "Virus removal from sewage effluents during saturated and unsaturated flow through soil columns," Water Res., 28, 2175-2181(2006).
  30. Thompson, S. S. and Yates, M. V., "Bacteriophage inactivation at the air-water-solid interface in dynamic batch systems," Appl. Environ. Microbiol., 65, 1186-1190(1999).
  31. Torkzaban, S., Hassanizadeh, S. M., Schijven, J. F. and van den Berg, H. H. J. L., "Role of air-water interfaces on retention of viruses under unsaturated conditions," Water Resour. Res., 42, W12S14(2006).
  32. Wayland III, R. H. and Oppelt, E. T., Onsite wastewater treatment systems manual, EPA/625/R-00/008, US Environmental Protection Agency(2002).