DOI QR코드

DOI QR Code

병원폐수의 전기화학적 처리시 무기응집제 주입 효과에 관한 연구

Effect of Inorganic Coagulants on the Performance of Electro-Chemical Treatment Process Treating Hospital Wastewater

  • Jeong, Seung-Hyun (Department of Environmental Engineering, Kunsan National University) ;
  • Jeong, Byung-Gon (Department of Environmental Engineering, Kunsan National University)
  • 투고 : 2011.04.14
  • 심사 : 2011.10.26
  • 발행 : 2011.10.31

초록

전해질 농도가 낮은 병원폐수를 전기화학적으로 처리할 경우 무기응집제 주입 효과에 대해 고찰한 결과, 무기응집제 주입으로 전해질 농도가 높아져 병원폐수 내 유리염소의 농도의 증가로 유기물질의 간접산화효과가 증가하여 전류밀도 $1.76A/dm^2$, 반응시간 120분에서 무기응집제를 주입하지 않은 경우보다 COD 제거효율이 약 2배 향상되었다. 또한, 무기응집제에 의한 전해질의 증가로 HOCl과 같은 유리 잔류염소의 증가로 병원폐수 내의 클로라민이 질소로 전환되는 속도가 증가함에 따라 전류밀도 $1.76A/dm^2$, 반응시간 120분 및 응집제 주입량 700 ppm에서 T-N 제거율을 약 2배 향상시킬 수 있었다. 동일 조건에서 90% 이상의 높은 T-P 제거율을 얻을 수 있었는데, 이는 무기응집제에 의한 전해질의 증가로 양전극에서의 발생되는 용존산소에 의해 생성된 불용성 금속 화합물과 인산염의 화학적 흡착반응 속도가 증가하였기 때문인 것으로 판단된다. 이상의 실험에서 전해질이 부족한 병원폐수의 전기화학적 처리시 무기응집제를 전해질로 첨가할 경우 유기물질 및 영양염 제거에 모두 매우 효과적임을 알 수 있었다.

Effect of inorganic coagulants dosing on the performance of electro-chemical process was studied when treating hospital wastewater having low electrolyte concentration. It is thought that adding inorganic coagulants caused increase in concentration of electrolyte and this caused increase in free chloride concentration and consequently, caused increase in indirect oxidation effect. Thus, COD removal efficiencies more than doubled in percentage terms at the 2 hrs of reaction time and current density of $1.76A/dm^2$ compared with the results obtained from the parallel experiments without adding inorganic coagulants. T-N removal efficiencies approximately doubled in percentage terms at the 2 hrs of reaction time and 700 ppm of coagulants addition and applied current density of $1.76A/dm^2$ due to the increase of free residual chlorine such as HOCl caused by increase of electrolyte concentration through the addition of inorganic coagulants. Under the same experimental condition, more than 90% of T-P removal efficiencies was obtained. The reason can be explained that increase of chemical adsorption rate between phosphate and insoluble metal compounds caused by dissolved oxygen generated from anode by the increased electrolyte concentration through inorganic coagulants addition make a major role in improving T-P removal efficiencies. It can be concluded that inorganic coagulants addition as the supplemental agent of electrolyte is effective way in improving organic and nutrient salt removal efficiency when treating hospital wastewater having low electrolyte concentration.

키워드

참고문헌

  1. 환경부, 수질환경보전법 시행규칙개정(2002).
  2. Dhooge P. M., "An Electrochemical waste processing system for closed environments," In Proceedings of the 8th Princeton AIAA/SSI Conference. American Institute of Aeronautics and Astronautics, Washington, D. C., 90-97(1987).
  3. Kreysa G., "Reactor design for electrochemical water treatment," In Process Technology for Water Treatment(Edited by Stucki S.), Plenum Press, New York, 65-83(1988).
  4. Sharifian H. and Kirk D. W., "Electrochemical oxidation of phenol," J. Electrochem Soc., 15, 921-924(1985).
  5. Brunner, P. H., Capri, S., Marcomini, A. and Giger, W., "Occurence and behaviour of linear alkylbenzenesulphonates, nonylphenol, nonylphenol mono-, and nonylphenol diehoxylates in sewage and sewage sludge treatment," Water Res., 22(12), 1465-1472(1988). https://doi.org/10.1016/0043-1354(88)90157-1
  6. Han, S. K., Nam, S. N. and Kang, J. W., "OH radical monitoring technologies for AOP(Advanced oxidation process)," First IWA Asia-Pacific regional conference, 1Dp3.
  7. Snoeyink, V. L. and Jenkins, D., Water chemistry, John Wiley & Sons(1980).
  8. Israilides, C. J., Vlyssides, A. G., Mourafeti, V. N. and Karvouni, G., "Olive oil wastewater treatment with the use of an electrolysis system," Bioresour. Technol., 61, 163-170(1997). https://doi.org/10.1016/S0960-8524(97)00023-0
  9. Chiang, L. C., Chang, J. E. and Tseng, S. C., "Electrochemical oxidation pretreatment of refractory organic pollutants," Water Sci. Technol., 36(2-3), 123-130(1997). https://doi.org/10.1016/S0273-1223(97)00378-8
  10. Comninellis C. H. and Pulgarin C., "Anodic oxidation of phenol for wastewater treatment," J. Appl. Electrochem., 21, 703-708(1991). https://doi.org/10.1007/BF01034049
  11. Stucki S., Kotz R., Carcer B. and Suter W., "Electrochemical wastewater treatment using high overvoltage anodes, part II : anode performance and applications," J. Appl. Electrochem., 21, 99-104(1991). https://doi.org/10.1007/BF01464288
  12. Mendia L., "Electrochemical processes for wastewater treatment," Water Sci. Technol., 14, 331-344(1982).
  13. Farmer J. C. and Wang F. T., Hawley-Fedder R. A., Lewis P. R., Summers L. J. and Foiles L., "Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver(II)," J. Elcetrochem. Soc., 139, 654-662(1992). https://doi.org/10.1149/1.2069280
  14. Della Monica M., Agostizno A. and Ceglie A., "An electrochemical sewage treatment process," J. Appl. Electrochem., 10, 527-533(1980). https://doi.org/10.1007/BF00614086
  15. Poon, C. P. C. and Brueckner, T. G., "Physicochemical Treatment of Wastewater seawater mixture by electrolysis," J. WPCF, 47(1), 66-78(1975).
  16. Standard Methods for the Examination of Water and Wastewater, 20th Ed. APHA., AWWA and WEF(1998).
  17. 환경부, 수질오염공정시험방법(2002).
  18. Lamy, C., "Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution," Electrochemical Acta., 29(11), 1581-1588(1984). https://doi.org/10.1016/0013-4686(84)85012-4
  19. Marincic Ljiljana and Frank B. Leitz, "Electrochemistry and electro-oxidation of ammonia in wastewater," J. Appl. Electrochem., 8, 333-345(1978). https://doi.org/10.1007/BF00612687
  20. Kim, K. W., Kim, Y. J., Park, G. I. and Lee, I. H., "Electrolytic Decomposition Mechanism of Ammonia to Nitrogen at $IrO_2$ Anode," Korean Chem. Eng. Res., 42(5), 524-531(2004).
  21. Comninellis, C., "Electrocatalysis in the Electrochemical Conversion/Combustion of Organic Pollutants for Waste Water Treatment," Electrochimica Acta, 39, 1857-1862.
  22. 배성근, 박승조, "전기화학적 방법에 의한 폐수중의 암모니아 제거에 관한 연구," 대한환경공학회지, 6(1), 44-55(1984).
  23. Kim, K. W., Lee, E. H., Choi, I. K., Yoo, J. H. and Park, H. S., "Electrolysis of Nitric Acid by using a Glassy Carbon Fiber Column Electrode System," J. Radioanal. Nucl. Chem., 245(2), 301(2000). https://doi.org/10.1023/A:1006702203741
  24. Bard, A. J., Parsons, R. and Jordan J., "Standard Potentials in Aqueous Solution," P127, Marcel Dekker, Inc. N. Y(1985).
  25. Paidar, M., Bouzek, K. and Bergmann, H., "Influence of Cell Construction on the Electroreduction of Nitrate," Chem. Eng. J., 85, 99(2002). https://doi.org/10.1016/S1385-8947(01)00158-9
  26. Genders, J. D. and Hartsough, D., "Electrochemical Reduction of Nitrates and Nitrites in Alkaline Nuclear Waste Solutions," J. Appl. Electrochem., 26, 1(1996). https://doi.org/10.1007/BF00248182
  27. Calvin P. C. Poon, "Electrochemical process for sewage treatment," 28th Industrial Waste Conference Proceeding, 8, 281-292(1973).
  28. Lidia S., Jereni N. and Francesco Z. G., "Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes," Water Research, 29(29), 517-524(1995). https://doi.org/10.1016/0043-1354(94)00176-8
  29. Diamadopoulos, E. and Benedek, A., "Aluminium hydrolysis effects on phosphorus removal from wastewaters," JWPCF, 56(11), 1165-1172(1984)

피인용 문헌

  1. Copper Removal In Cooling Tower Effluent by using Aluminium Electrocoagulation vol.40, pp.1, 2018, https://doi.org/10.4491/KSEE.2018.40.1.21